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Synopsis

The purpose of this investigation is to study the behavior of various

probes used in the measurement of time-varying electromagnetic fields on

a macroscopic scale. Both theoretical and experimental treatments of the

subject are included.

The ideal probes for this purpose would be an infinitesimal electric

dipole and an infinitesimal magnetic dipole. The former can be physically

approximated very well by a finite electric dipole, that is, a linear receiv-

ing antenna. The latter, on the other hand, should be approximated by a

finite magnetic dipole, and this is only approximately formed by a receiving

loop antenna. The deviation is caused by the presence of modes of oscilla-

tion other than the circulating loop-current mode for a loop of finite size.

In both cases, a field-averaging effect is present which depends on

the size of the loop relative to the shortest wavelength required in the rep-

resentation of the incident field by a Fourier integral of plane waves.

In both cases, a transmission line is customarily used to take the

probe current to a distant receiver for measurement. Since the line usually

lies in the incident field, currents will be excited on its outer surface, and

these may be coupled electromagnetically to the probe currents, thereby

causing an error.

In both cases, a probe-loading effect may be present if the probe is

too large or too close to the source, so that the presence of the probe signif-

icantly alters the current distribution on the source itself.

Each of these effects is studied here to some degree, but the major

emphasis is placed upon the study of the effect of higher-order modes in a

loop probe. The other effects are, at least qualitatively, generally known

and understood, but the errors peculiar to the loop have usually been ignored.

-xvi -
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In a receiving loop of fairly small size (less than one wavelength in

circumference), there is a constant circulating current proportional to the

average magnetic field normal to the plane of the loop. The magnetic sen-

sitivity can be defined as the ratio of this current to the magnetic field that

produces it. There are also currents for which two halves of the loop oscil-

late separately and in phase, with maximum currents at the centers and zero

current at the ends of the halves, much like the currents in a folded dipole

antenna. These currents are proportional to the average electric field par-

allel to the two sides of the loop. The electric sensitivity can be defined as

the ratio of this current to the electric field that produces it. Higher-order

currents, with more zeros around the loop are also present, but they are

small, and may be combined with the magnetic and electric dipole currents

in the final evaluation of the magnetic and electric sensitivities. A probe-

error ratio can then be defined as the ratio of the (undesired) electric sen-

sitivity to the (desired) magnetic sensitivity.

The magnetic and electric sensitivities were measured for a variety

of loops, with varying shape, size, and load configuration. These values

were compared with the theoretically-predicted values in each case.

The principal contribution of this study is the evaluation of the probe

errors to be expected for various loops. On the basis of this discussion,

certain recommendations are made for the limitation of these errors in

various measurement situations. In fact, one probe is developed which

utilizes the electric mode currents to. allow measurement of the electric

field in one circuit, while these currents are canceled out in another circuit

to obtain an output that is proportional purely to the desired magnetic field.

A further improvement is presented which somewhat reduces the effect of

transmis s ion -line coupling.
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Finally, these effects are illustrated in connection with particular meas -

urements of radiation fields, near-zone fields, transmission-line fields, and

linear-antenna currents. It is shown in each case what the deviations are in

the measured results and how they may be reduced.



Abstract

It is well known thAthe behavior of probes in the electromagnetic field

is limited by the averaging of the measured field over the finite size of the

probe. This is the major restriction on the use of the receiving dipole as an

electric probe.

The usual magnetic probe, a shielded loop, suffers in addition from a

less well-known source of error. Such a loop, even for moderate size, will

sustain currents that are proportional to the tangential electric field, not to

the normal magnetic field as desired. These electric mode currents are

studied in some detail, and methods of avoiding or reducing them are pro-

posed and tested. In addition, the behavior of loop probes is studied in general,

both theoretically and experimentally, varying all the relevant parameters such

as loop size, shape, wire size, and load.
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CHAPTER I. EXPERIMENTAL SETUP

Section A. Mechanical Equipment

1. Free-space room

In order to conduct field measurements indoors it was found necessary

to construct a free-space room. The advantages of an indoor setup were two:

experiments can be performed at any time of year without regard to the vagaries

of New England weather, and it was possible to use existing space with a mini-

mum of new construction. The disadvantages are obvious: the need for constant

conditions despite the movements of other people and their equipment nearby,

and the need to reduce even constant interactions between the field and the sur-

roundings to a minimum in order to simulate the theoretically assumed condi-

tions of free space.

The conventional image plane technique was used, whereby the associated

equipment is placed behind a perfectly conducting ground screen and isolated

from the field region. The field in front of the image plane is identical to that

which would be present if the metal screen were removed, and the electrical

images of all objects in the field region introduced. This restricts the prob-

lems that can be studied to those with suitable symmetry, but possible configu-

rations are quite adequate for our purposes.

It was hoped that a suitable placement of a few absorbing sheets would

provide the required isolation, at least within a small region, but this was far

from the case. In fact, the sensitivity of the equipment was such that even the

motion of people walking by in the hall outside produced noticeable fluctuations,

so the construction of a complete free-space room was necessary, The free-

space room ideally should have perfectly absorbing boundaries in order that no

reflected waves be present; however, absorbing materials available for 50 cm

1-1
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wavelength reflect about 2% of the incident power. Since we could not have an

ideal room, it was designed for minimum reflections in a limited region, the

measurement region (Figs. I-ia, b). In the interest of economy the room was

made as small as consistent with a small reflected field in this region.

The room is built against a vertical aluminum ground plane 12 feet wide

by 10 feet high. An absorbing floor and ceiling are mounted against the floor

and ceiling of the room, giving an interior height of about 8 feet. The floor was

raised and lowered to determine the optimum position for reduction of standing

waves, and it was found that simply laying it on the existing floor was adequate,

if the section nearest the ground plane, and directly under the source, was raised

and tilted downward at an angle of 20 degrees. This directed any reflected rays

out beyond the measurement region. The floor was strong enough for walking,

but a Styrofoam plank 1 foot thick was used to allow the operator to reach his

equipment better, and paper was used to keep the walkway clean. Above the

measurement region it was necessary to recess the ceiling to allow for the probe-

positioning mechanism. Furthermore, lack of space prevented canting the ceil-

ing near the ground plane, and a large beam necessitated a step in it. It is not

known specifically how much reflection these factors introduced, but it seems

likely that they are slightly larger than reflections from other sources.

The side walls are built near the ends of the ground plane, and again the

sections nearest to the ground plane were canted outward at a 20 degree angle.

One wall was placed in position first, and then the other tuned in and out to

find the position for minimum standing waves in the measurement region for the

This is a nominal figure deduced from the manufacturer's specifications and
applies to all types of absorber used, for angles of incidence up to 60 degrees
from normal. Tests conducted, although not precise, confirmed this.
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chosen source position. Then the front wall (which is in the null direction from

a broadside source) was placed parallel to the image plane about 7 feet out. By

moving the wall in and out and observing the standing-wave ratio of the field at

various points in the measurement region this distance was found to be adequate.

The entrance is constructed in an open labyrinth style which is much more con-

venient to use than a closing door, and which was found to be equally good with

respect to reflections in the region of interest.

The absorber used was mainly Lype BL-8 manufactured by the McMillan

Industrial Corporation, although a few sheets of type FR-350* were obtained from

Emerson and Cuming, Incorporated and a few sheets cf B. F. Goodrich Spongext

were also used. Type BL-8 is shown in position in Fig. 1-2. It is made by bor-

ing conical holes from the back in an 8-inch thick sheet of Styrofoam and then

spraying them with a lossy compound of graphite. From the front surface, an

incident wave "seesm the graphite loading increase smoothly from zero to a high

value per unit area. The front surface is painted white for convenience in light-

ing.

In order to provide complete isolation from the outside a conducting

screen was built of aluminum window screening outside the walls. The floor

and ceiling were up against the reinforced concrete of the building and needed

no additional screening. By locating the screening about one-quarter wavelength

FR-350 is essentially the same as BL-8 except that it has an extra rubber
backing sheet. The choice of type BL-8 over type FR-350 was governed only
by price.

tSpongex is a spongy horsehair mat which is loaded with graphite in a manner
that increases with depth. It is black in color and its open construction picks
up dust, although it has the advantage of mechanical flexibility and was used
where this was needed.
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behind the back of the absorber it was found possible to enhance somewhat its

operation. This is due to the standing-wave pattern produced, which places

an electric field maximum in the region of greatest dissipation and thus gains

the greatest possible absorption of power.

Dimensional drawings of the room are shown in Fig. I-1, and photo-

graphs in Figs. 1-3. 4. Test results showed a standing-wave ratio of less

than 1. 13 in the region within 50 cm of the source and at least 10 degrees off

the null axis. When referred to the field near the source in the direction of

maximum field, the SWR drops to 1. 06 or less. Therefore, the field approxi-

mated the free-space field within 7% over a region within a wavelength of the

source and within 4% over a region within a radius of one-half wavelength.

Z. Probe mount for image method

The probes themselves can conveniently be studied against the image

plane, in which case there is no need for a transmission line in the incident

field. This was the primary method of determining the probe parameters,

although free-space measurements were used for comparison in certain cases.

To do this, half probes were mounted on a disc which could be rotated

in place in the image plane (Figs. 1-5, 6). Two coaxial lines were connected

at the back of the disc, and the ends of the probe could be connected to the

center conductors or short-circuited to ground at the image plane. A method

of construction using eccentric placement of the lines in two rotatable internal

discs allowed a single probe mount to be used for a variety of probe sizes.

3. Probe--positioning mechanism

The probe -positioning mechanism used for "free -space" measurements

is illustrated in Figs. I-7, 8. It consists of a radial arm with one end mounted
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with a ball bearing at the top of the image plane directly above the source an-

tenna, and the other end free to swing horizontally through 90 degrees, riding

on a wooden supporting arc. Along the arm travels a sliding carriage, from

which is hung a rigid section of transmission line with the probe at the end. A

universal joint connecting the line and carriage allows the probe position to be

adjusted slightly without moving the carriage. By means of a system of strings

and pulleys, the operator standing below can move the probe in azimuth and

radius anywhere within a quadrant-shaped region.

The probe rotates freely through about 380 degrees about its vertical

axis and stops are provided to prevent rotating further and twisting the cable.

An angle scale is attached to the carriage to indicate the amount of rotation,

and a magnifier and a vernier are provided to allow reading it from a distance

of 5 feet. In addition, there is a probe-rotating gear drive in the carriage

which may be attached to a flexible shaft and operated remotely from behind

the image plane. The advantage of this for determining the votation angle for

maximum or minimum output is great, since it allows continuous reading of

the output while the probe is being rotated. The angle can be read to + 0. 4

degree, but backlash and bending of the entire mechanism in use limit the

angular accuracy to about 2 degrees in absolute value and about 1 degree in

angular difference at a single probe position.

It was found absolutely essential to avoid resonant lengths of metal in,--

this system. Many of the parts of the probe-positioning mechanism are made

of wood to minimize the scattered field, but the radial arm itself is made of

metal, since the metal transmission line lies along its length anyway. It is,

however, made with an open and narrow construction to minimize the back-

scattering cross section. Various methods of reducing the backscattering from
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the arm were tried, such as covering with Spongex absorber, applying a coating

of resistive paint, and hanging quarter-wave wedges of resistive Nikon cloth

from it, but none seemed to make much difference once all resonant pieces of

metal had been detected and removed. An auxiliary probe was used to study the

scattering effects, and it was concluded that at typical points in the region of

measurement the scattered field was at least 30 db below the direct incident field

for the system finally adopted. A dummy transmission line with detuning sleeves

identical to those on the actual transmission line was in place during this test,

showing that radiative scattering from the feed line was also negligible.

4. Coordinate table

For "free-space" measurement a means of measuring the probe location

is required, so a set of coordinates is plotted on the surface of a table lying a

fraction of an inch below the probe (Fig. 1-9). Because it was required that the

table have a minimal electromagnetic effect it was made of Styrofoam HD-Z,

manufactured by Dow Chemical Company. This has a higher density than ordi-

nary Styrofoam and a sheet I inch thick (. 05X) was rigid enough for the table

top. It has a relative dielectric constant of 1. 07, so its wave impedance and

propagation constant differ by only 3. 5% from those of free space. For such a

thin sheet, this produces a phase error of less than I degree in the transmitted

wave, and a field reflection coefficient of less than Z% (. 04% of the power). The

legs are of thin-walled polystyrene tubing and are well away from the source.

When the probes are rotated they should not change location, so pivot

pins are used in holes tapped in the table top at convenient intervals (Fig. 1-10).

For the near-zone field of a dipole, confocal coordinates were used, but rec-
tangular coordinates were also available.
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These pins are also made of Styrofoam HD-2, and they are threaded by pressing

in a die. They have a pointed top which engages a Styrofoam fitting at the cen-

ter of the probe and holds it in position, and they can be withdrawn in order to

move the probe to a new location.



Section B. Transmitting System

(Figures I-Il , IZ)

5. Transmitter

The transmitter is a military type T85/APT-5, which uses a ZC39

lighthouse triode oscillator in a mechanically tunable cavity. It was operated

at a fixed frequency of 600 mc in the CW mode, and provided about 20 watts

output into a 50 ohm load. Using the wavemeter, no measurable frequency

drift was found after a warm up of four hours.

6. Choice of frequenc,

A frequency of about 600 mc (wavelength 50 cm) was chosen as a com-

promise between the requirement of a long wavelength to allow mechanical

construction of electrically small probes and the need for a short wavelength

so that the ground plane and the free-space room would be electrically large.

At this wavelength it was possible to construct probes with reasonable accu-

racy down to a diameter of 0.01 X , and the free-space room was 5 wavelengths

wide by 4. 5 wavelengths high.

7. Frequency measurement

The transmitter signal was sampled by a 30 db directional coupler and

then fed to a cavity wavemeter, type AN/UPM-2. This has a diode detector

and DC micrometer together with a reactive network and a micrometer-tuned

cavity to measure wavelength. Although the cavity is only 4 inches long, it is

still possible to detect wavelength changes of the order of . 02 cm. The wave-

meter was calibrated by comparison with wavelengths measured in a standard

slotted line, Hewlett Packard type 805A, with a short-circuit termination, in

which wavelength can be measured to + . 01 cm.

1-8
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8. Filter

A coaxial low-pass filter manufactured by Cruft Laboratory was tested

and found to cut off at 800 mc and have Z0 db insertion loss at 900 mc and es-

sentially zero insertion loss at 600 mc. This was used for the elimination of

harmonics in the transmitted signal.

9. Transmitter power measurement

The transmitter signal was sampled by a 30 db directional coupler and

then fed to a General Radio signal sampler. ty-pe 874-VQ, which is terminated

in a matched load, and uses a crysaal detector and a type 874-VI voltmeter in-

dicator to sample the sigru4voltage. This indicator has only about 5% accuracy,

but was convenient as a continuous relative signal-level monitor.

For a measurement of absolute transmitted power, a Hewlett Packard

Model 430-B power bridge with a thermistor detector was used in place of the

signal samplor, but the long-term instability of the bridge made it unsuitable

for continuous monitoring purposes.

10. Source antenna

The source antenna was a quarter-wave unipole extending through the

image plane, with a length, h , of 12. 5 cm and a diameter, Z% , of 0. 159 cm

(1/16 inch), which gives a value of the thickness parameter, 2 = Z&n -- , of

11. 4. It is constructed by extending the center conductor of a type N coaxial

connector through the image plane. The connector is mounted on the image

plane using a flanged plate, and may be readily connected to a flexible cable

(Fig. 1-13). The field of such a source is discussed in detail in Appendix A.



Section C. Receiver System

(Figures 1-14, 15, 16)

11. Receivers

There are two superheterodyne receivers, General Radio type DNT-3,

one in the sum circuit, and one in the difference circuit. They are tunable

from 250 to 920 mc and have a half-power bandwidth of 0. 7 mc. The sensitivity

is such that 25 microvolts behind a 50 ohm source produces 0 db meter indica-

tion. This is the lowest reading for which the system is linear, although read-

ings may be obtained down to -10 db. The useful range is from 0 to 80 db.

This receiver has a IN21B mixer crystal in a broadband coaxial holder,

type 874-MR, with a local oscillator, type 1209-B, using a Sylvania type RT-434

disc-seal triode in a butterfly tuning circuit. The IF amplifier, type 1216-A, is

a four-stage high-gain linear amplifier, operating at 30 mc, with a 70 db preci-

sion step attenuator at the input. The output meter is calibrated in linear units

and in decibels, and can be read within 0. 1 db.

The long-term drift of the entire system produces less than 0. 5 db

change in output indication over a 6 hour period after warm up. Normally, the

drift is much less than this, of the order of 0. 1 db, and fairly frequent calibra-

tion checks were made to ensure accuracy. The receiver linearity was adjusted

and the scale calibrated from time to time by using a slotted line with a short-

circuit termination, assuming that its probe current followed the theoretical

cosine distribution. Since the residual standing-wave ratio of this line was 1. 0 1,

this was a reasonable assumption. With this calibration, the receiver system

was accurate to + 0. 1 db, over any 30 db range, but there is 0. 1 db switching

error in the attenuator switch, so a stability figure of 0. 1 db gives over-all

receiver accuracy of + 0. 3 db.

1-10
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12. Cables and accessories

For the most part, double-shielded, 50 ohm coaxial cable type RG-9/U

was used, and where single shielded cable was used, an extra layer of braided

shielding was pulled over it to minimize leakage. This was found to be abso.-

lutely essential in the sensitive receiver circuits, although not particularly

important in the transmitter circuits with their higher signal levels. All cables

were clamped in position to avoid flexing. Type N connectors were generally

used because of their low leakage, low standing-wave ratio, and mechanical

stability.

Various double-stub tuners and attenuator pads, such as those manu-

factured by Microlab Incorporated, were used. Directional couplers and hybrid

junctions were standard wide-band types made by Norda Microwave Corporation.

Some of the components in the receiver circuit had Gpneral Radio con-

nectors, which have notably high leakage even with their metal retainer rings,

so it was found desirable to place all the receiver circuitry in a shielded metal

box with feed-through connectors for signal, phase reference, and local oscil-

lator inputs and for IF output.

13. Balun detector

The "balun detector" [1] is a device with a shielded-pair input, which

couples the balanced mode to one output port and the unbalanced mode to the

other output port. In our application, the input is adapted from two single co-

axial lines, and the outputs are the sum and the difference of the two input

currents.

The construction of the "balun detector" is shown in Fig. 1-17. It is

seen to be a shielded-pair transmission line with a short circuit across the end.
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The two inner conductors are also short-circuited together by a conducting

bridge located one-quarter wavelength from the end, where the unbalanced

voltage has a maximum. The output terminal for the sum circuit is connected

by a symmetrically placed post to the center of this bridge. A second bridge,

with a gap in the center, is one-half wavelength from the end, where the bal-

anced voltage has a maximum. This voltage appears across the gap and drives

a miniature coaxial line connected to the gap and traveling within one inner

conductor to the outside terminal for the difference output. The other inner

conductor contains a short-circuiting piston which is also connected to the gap

and which may be tuned to maximize the difference output.

For an idealized balun detector with matched terminations, we can

write a simplified scattering-matrix equation:

6 \sAl

where I and 1A are the two output currents and II and I1 the two input

currents. This idealization is simply a reduction of the general scattering

matrix where all the other coefficients are assumed to vanish. This can be

rewritten:

I =I ELU S 1B) (I + 1.(1

A -S AU SA/S Il-I1

where

S =I I/Z (S2 1 +S1 2 )

SAu = 1/2 (S~l + Sz)

s IB= I/Z (Stl - Sid)

SAB = 1/a (S~i - SA2). (1-3)

For a perfect balun detector, IS*uI = ISAB& = 1 and Su = SAU = 0 , so that
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one output equals half the sum and the other half the difference of the input

currents.

It was only necessary to measure these coefficients approximately,

since a later test of the over-all balance of the system was to be made. To

do this the output currents were measured under four different driving con-

ditions: II=:2 and I I -I2 , interchanging the input leads in each case.

This gave

ISLuI = 0. 97

Is uI = 0.013

IsIBI = 0. 020

Is I = 0.92

which implies that the sum and the difference currents are separated to an

accuracy of better than 30 db. For equal sum and difference signals this will

give 3% accuracy in the output circuit.

14. Balance adjustment

The balun detector is connected by various transmission lines and other

components to the probe under study, and the probe itself may not be mechani-

cally exactly symmetrical. Therefore, a variable attenuator and phase shifter

were placed in each of the coaxial input lines in order to make adjustments for

accurate sum and difference output.

For a loop probe, the balance adjustment is made as follows. * The probe

is placed in a position where it will only be excited symmetrically, which can be

This discussion is written in general terms so as to apply to either the free-
space or the image method. For the image method, all reference to the feed
line should be omitted.
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done mechanically by locating it symmetrically with respect to the source. Any

reading in the difference output is then due to either coupling from the symmetric

input or to a residual antisymmetric excitation, so we can write an expression

for the difference output:

IA = CI IA + c ZS (1-4)

where IA is the antisymmetric probe excitation

IS is the symmetric probe excitation

c 1, c2 are complex constants of the balun detector system.

But the symmetric excitation itself may come from two sources: the incident

electric field in the plane of the loop, or electromagnetic coupling to the current

on the outside of the feed line. Hence, it can be written:

1 S =E +F (1-5)

and

IA = C 1IA+c.IE + cZIFL. (1-6)

By decoupling the feed line, IFL can be made small compared to IE* Then

the balance adjustments are made for minimum IA ' Next the probe is rotated

180 degrees and the balance adjusted until the difference output is constant under

this rotation. The difference output in the 180 degree position is

IA= cI IA c21E + cZIFL. (1-7)

Since the antisymmetric excitation depends on the normal component of B , it

is invariant under this rotation, as is IFL' which depends on coupling to a feed

line which lies along the axis of rotation. On the other hand, IE reverses sign

under 180 degree rotation, since it depends on the electric vector in the plane of

rotation.

For the method of decoupling, see below under Transmission Line.
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The condition I = Iý is the desired condition of balance since it re-

quires

Cl IA +c2IE+ cZ IFL = c I A cZ IE + c ZiFL (1-8)

which can only be satisfied for finite IE at cZ = 0 , and this does imply zero

coupling of the symmetric excitation to the difference output.

If interest is primarily in the sum output a similar method can be de-

vised. It is to be noted that unless separate balun detectors are provided for

the sum and difference circuits, only one of these can be optimized at a time,

since no balun detector will be perfect. Nevertheless, one that is carefully

made will perform fairly well in both modes at once.

It is important to know how accurate the balance adjustment is in a

given field measurement, and this is readily determined. The error in the

difference current due to asymmetry and imbalance combined is simp*• half

the change in this difference current under a rotation of the probe of 180 de-

grees in its own plane. Typically,this error was found to be less than 2% in

magnitude and 1 degree in phase. This is as good or better than the balun

detector alone, and is quite satisfactory.

*Another method of balance adjustment that was sometimes used consisted of

placing the probe in the same symmetrically excited position and then meas-
uring individually the currents IZl and IAZ in the difference output due to
line I and line 2 from the probe. Then the probe is rotated 180 degrees and
the new currents I~l and I•Z are measured. Adjustment is made for the
condition 1A2 1 A1

Al

which implies a correct balance adjustment if the (symmetrical) excitation of
the probe by the feed line is negligib4e compared to its excitation by the sym-
metrical electric field. Although this is a reasonable assumption which can
easily be checked, it is not needed for the preferred method described in the
text.
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15. Phase measuring system

The phase of the probe signal was measured in the conventional way.

by canceUltion against a reference signal of variable and measurable (rela-

tive) phase. The two signals are added in a hybrid junction and the reference

phase adjusted for minimum output in each case. The reference signal is

obtained by using a 10 db directional coupler coupled to the forward wave at

the transmitter output. It is brought to the receiver by a cable of electrical

length approximating that in the signal circuit to minimize errors due to fre-

quency drift.

Since the sharpness of the null thus obtained depends on the relative

magnitudes of signal and reference, it is necessary to provide amplitude

adjustment in the reference circuit. This was done in two different ways. A

variable turret attenuator with 10 db itteps was placed in the reference circuit.

so that the reference amplitude could always be set within 5 db of the signal

amplitude. The phase difference due to a change in the attenuator was meas-

ured for each value of attenuation and used as a correction. Because of the

variations in phase shift due to switching the attenuator, these corrections

vary over a range + 2. 5 degrees from the mean value. The second method

was to use a continuously variable waveguide-beyond-cutoff attenuator, which

allows setting the reference leval for an exact null whenever desired. Theo-

retically, for a single cutoff mode, such an attenuator has a constant phase

shift (the propagation constant in the cutoff guide is purely imaginary). In

practice, the presence of other modes and of mechanical imperfections cauqfS

some deviation from this ideal. By comparison with the current in a short-

circuited coaxial line, which has varying amplitude and constant phase over

each half wave section, it was found that for the General Radio type 874-GA
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attenuator used, the phase error is less than I degree for any 20 db range of

attenuation beyond 2 db on the scale. Because of the sharper nulls available,

this method has less error due to residual SWR in the phase line than does the

method with the step attenuator. Unfortunately, this was not discovered until

after many of the measurements had been taken, so the poorer figure must be

assumed throughout Chapters II, IUI, and IV.

The phase of the reference signal is varied by using two constant-

impedance trombone-type line stretchers, General Radio type 874-LT, mounted

with a rack and pinion for precise adjustment and a vernier scale for measure-

ment. These are very well made and show a variation in transmitted signal of

+ 0. 5%, which implies a phase error less than + 0.3 degree. The vernier

scale can be read to J .01 cm, implying a reading uncertainty of + 0.15 degree

(+ 0. 3 degree for two trombone lines in series). The over-all accuracy of the

phase shifter is + 0. 6 degree, which is much better than that of the available

phase lines using a matched termination and a traveling probe, which have a

residual SWR of 1. 05 and thus a phase error of + arctan SW = - Ide-

grees [2].

As the sharpness of the null increases, the slope of the output current

becomes steeper and the effect of the reading uncertainty of the output meter

has less and less effect on the accuracy of adjusting the phase shifter. The

null was normally located by taking two points with eqpal amplitude on either

side of it and averaging their positions. It can be shown that points about 3 db

above the minimum give the greatest accuracy for standing-wave ratios greater

than 10 db so these were normally used except for very sharp nulls where any

convenient level was used, and for shallow nulls when the 3 db points became

too far apart.
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As a resnit of 'hese considerations. accuracy of phase measurement

was + 3 degrees in Chapters II, III, and IV, and + 1.5 degrees later.

*Ginzton [3] gives a graph of equal response points for minimum error in

location of voltage minimum as a function of the voltage standing-wave ratio.



Section D. Probe System

16. Probes

Half-probes for use against the image plane were made of solid copper

rod and required no feed line since the load was effectively located at the image

plane itself. Pointed tips were soldered to their ends for insertion in the ends

of the coaxial lines in the probe mount. The wire sizes chosen were the same

as the diameter of 1/2 watt resistors, the tubing used for free-space probes,

and the center conductor of Microdot cable. For the study of variable load re-

sistance, ordinary 1/2 watt fixed composition resistors were insertad in these

tips (Fig. 1-6). The reflection and transmission coefficients of the resistors

were measured, using a Deschamps method, and the measured load impedance

was used in calculations. It may be seen from Fig. 111-7 that for increasing

resistance the measured impedances show increasing departure from the nomi-

nal DC values, and that this departure may be as great as 40%.

The free-space probes are made of coaxial tubing wits teflon dielectric

and a silver-plated, solid copper center conductor. The specifications are:

Type 1 O.D. = .078 in. Zo = 56.2 ohm Xg/ = .741
center conductor 29 gauge
outer conductor .078 in. O.D., .018 in. wall
center conductor and dielectric from Microdot cable No. 50-3902

Type 2 0. D. = .032 in. Zo = 50 ohm Xg/Xo = .696
center conductor 34 gauge
outer conductor . 032 in. 0. D., .004 wall
manufactured to order by Wirecraft Products Incorporated
West Brookfield, Massachusetts, and Precision Tube Company,
North Wales, Pennsylvania.

They are bent and soldered in aluminum jigs and can be built accurately within

+ 0. 3 cm in sizes down to 0. 5 cm diameter. Circular loops are readily made,

but square loops have somewhat rounded corners since they were made by bend-

ing. All free-space probes have a short perpendicular section of fepd line for

1-19
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attachment to the main feed line. They are also mounted on a thin wafer of

Styrofoam with a hole in the center to engage the pivot pins. Their "load" is

simply a gap or gaps in the outer conductor, and the load impedance is the

impedance looking into the internal coaxial line at the gap. The feed line is

connected at various points on the loop, but the effect of this is negligible on

the antisymmetric current. The effect on the symmetric current is discussed

under the measurements themselves. Various sets of probes are illustrated

in Figs. 1-18 - 24.

17. Probe connector

The probes are connected to the transmission line by a specially de-

signed connector (Fig. 1-25), which allows easy interchange of probes. A jig

is provided to hold the parts in alignment while the center conductors are

soldered together. The jig is then removed and the connector, which is split

in half, is placed over the joint and clamped in place by a tapered retaining

sleeve. To match the transmission line, the impedance of the connector is

56. 2 ohms, except in the central section where it lies between 63 and 69 ohms

for a distance of .016X 9 (less than 6 electrical degrees). Such a small change

in characteristic impedance over such a short length produces no significant

transformation of the load impedance through the connector except for a rota-

tion of . 016 X on the Smith chart. The load impedance presented to the probesg

was measured at the input plane of the connector and transformed mathemati-

cally along the internal line to the probe gap, so that the effect of the probe

connector was taken into account.

This is discussed further in Section V-i.



18. Transmission line (Fig. 1-26)

The transmission line from the probe serves two purposes: to conduct

the current back to the receiver, and to connect the probe mechanically to the

positioning mechanism. It is erected perpendicular to the plane of the probe

to minimize coupling between them. Electrically it consists simply of two

56. 2 ohm miniature coaxial lines with a solid outer conductor for the first few

feet and double shielding the rest of their length. These are contained in a

steel tube that runs from the probe to the positioning carriage and provides the

desired mechanical support. They then continue as flexible cable along the

positioning arm to the back of the image plane where they are connecttd to the

receiver.

Since much of the line lies in the primary field, there are currents on

its surface which may be large. These currents produce a scattered field

which must be made small in the region of the probe. This may be discussed

in three parts. First, the radiation from the horizontal portion was negligible,

since (for a non-resonant line) its field equals approximately the incident field

at the line times a/ r (about . 02) where a is the average radius of the conductor

and r is the distance to the probe. Secondly, the radiation from the vertical

portion of the line was neglected since it has an electric field parallel to the

vertical axis and therefore normal to the piane of the probe, and can excite no

currents in the probe itself. Thirdly, the conductive and capacitive coupling

from the near portion of the line to the probe may be quite large.

*These effects were experimentally checked and found negligible in connection

with the probe-positioning mechanism.
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Currents on the surface of the transmission line can be minimized by

placing tuners at intervals along it in order to prevent resonant currents from

building up to large values [4]. The tuners are coaxial sleeves filled with poly-

styrene with one end closed and the other open (Fig. 1-27). They slide on the

outside of the transmission line, and may be tuned in both length and position.

There are twelve tuners in all, and it was impossible to find a method of tuning

them individually, so all except the bottom one were placed with open ends at

intervals somewhat less than a quarter wavelength (actually . 196 X) along the

line and set for an internal length of . 25X g so that they present a high reactance

(ideally an open circuit) at the open end. The general effect of these is to make

the outside of the line look broken up into a series of short (non-resonant)

lengths of conductor connected at the ends by very large impedances so that

each short section is excited somewhat independently of the others.

The bottom tuner, nearest the probe, can be adjusted more precisely,

so it is made with a threaded construction (Fig. 1-28). The adjustment is

made experimentally by considering the output of the sum circuit from the

probe. It is known that IS = IE + IFL (Eq. 1-5), avid that for a reasonably

good balance adjustment 11 oc IS ' Therefore, the probe is placed in a posi-

tion where the parallel electric field is very smallt, so that -E and

the feed line is detuned for minimum IL , which then implies that the probe

current IFL due to feed line coupling is a minimum. Equation 1-5 also shows

This adjustment is made before the final balance adjustment.

tSuch a region is on the axis of a quarter-wave unipole with the load sides of
the probe perpendicular to the axis and parallel to the tangential electric field
which theoretically vanishes there. The normal magnetic field is also ideally
zero there, so there is negligible coupling from the antisymmetric mode, as
it is only residually excited.
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that any error in a particular measurement due to this source may be detected

by a change in the sum current other than a change in sign when the probe is

rotated 180 degrees.

In practice, IFL was compared to the excitation IE due to the radial

electric field on the axis of the unipole source, and found to be 10 to 30 db be-

low it. Small probes were considerably poorer in this. respect than larger ones,

mainly because their response to the E field decreases rapidly with size while

IFL decreases relatively slowly with size. This produced errors in the sum

current I% ranging from 1% to 18% in a typical field region, and even greater

errors in regions of small E field. However, the balance adjustment was good

enough to prevent feed line coupling from producing a measurable error in the

difference current IA , which was the output of primary interest.
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FIG.I1-5. HALF PROBE IN
POSITION AGAINST

IMAGE PLANE

FIG. 1-6. MOUNTING DISC AND

RESISTOR INSERTS
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FIG. I-8a. PROBE POSITIONING MECHANISM

IN PLACE
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FIG. 1-9. COORDINATE TABLE WITH

SOURCE ANTENNA AND PROBE

7FEED LINE

HORIZONTAL LOOP
PROBE

9STYROFOAM WAFER
WITH CENTER HOLE

'NN TABLE WITH
TAPPED HOLES

\THREADED PIVOT PIN

5/1ý' D x 11/2" LONG

FIG. 1-10. COORDINATE TABLE DETAIL SHOWING PROBE PIVOT
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FIG.I-18. IMAGE PROBES

UNIPOLES IN MOUNTING FLANGES

FIG I 19. IMAGE PROBES, SQUARE HALF-LOOPS

FIG. I-20. IMAGE PROBES, CIRCULAR HALF-LOOPS



FIG. 1-21. FREE SPACE PROBE, ELECTRIC DIPOLE

FIG. 1-22. FREE SPACE PROBES, SQUARE LOOPS,

SINGLE AND DOUBLE LOADS



FIG. I-23. FREE SPACE PROBES

VARIABLE LOAD PLACEMENT

FIG. 1-24. BRIDGED LOOPS

FREE SPACE AND IMAGE TYPE



z 0 Zf

UJ z
a. U) LLI D 0 C
D5

Vz

I- w -

Wa. w
Z~ 1 j 0

r -
U.

Lnz

NN
* ~itl

- V 
Nr

6 -4

z w



z
0

z
01

z

d



POLYSTYRENE PLUG
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CHAPTER U. THE ELECTRIC DIPOLE AS A PROBE

Section A. Theory

It was convenient to begin the study of probes with an examination of

the electric dipole, even though its behavior is relatively well understood,

because it is the simplest probe, and the procedures used give some insight

into the more complicated ones.

1. Equivalent circuit

Consider a linear antenna of length Zh and diameter Za , center

loaded by a transmission line terminated in its characteristic impedance ZL

(Fig. Il-la). The component of the incident field parallel to the antenna, E 11

excites a current in the load. On the other hand, it may be seen by symmetry

that the component of the incident field perpendicular to the antenna, Ei ,

induces no current in the load. The current IL in the load Z L is to be

determined.

The actual system can be replaced by an idealized antenna coupled

with a passive terminal-zone network into an idealized transmission line [1]

terminated in Z L * Referring to Fig. II-ib, the impedance looking into the

antenna at terminals A-B is Z0 , the input impedance of the antenna when

driven. The impedance looking toward the load at these terminals is Z'L.

By Thevenin's theorem, the antenna can be replaced by an ideal voltage gen-

erator with the same open-circuit voltage, V0 , in series with the impedance

Z0 (Fig. II-1c) [2]. From the equivalent circuit we see at once that the base

current in the antenna is:

V0

It = 0 (lI-la)

Il-I
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This can be written in terms of admittances:

YL

YL + y 0÷ Y 0 Vo0  (II-lb)

This can be normalized to unit incident field:

YL
iL -TL. + Y0 YO v 0 (n-1c)

where

iL = V/Eii and v0 = Vo/Ell

The normalized base current in the unloaded receiving antenna is:

i = Y0 vo0  (II-Z)

For a passive terminal-zone network the current entering the load is:

i L = Cz i. (1L-3)

where c z is a constant dependent only on the geometry of the terminal zone.

The probe sensitivity in amperes per volt per meter can now be defined:

S = iL L .(11-4)

By substitution in the above:

y,
S YL

S cz y.y0. (01-5)

2. Admittance Y0

The input admittance of the driven linear antenna has been the subject

of intensive theoretical studies. King [3] uses an iteration method to solve the

integral equation for the current in such an antenna, and obtains as a result

the ratio of two power series in the reciprocal of the expansion parameter
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.. Evaluating the current at the driving point and dividing -ut the voltage

leaves an expression for the desired admittance. The analytical expressions

involved are rather formidable, but, fortunately, he has prepared rather com-

plete tables of the second-order impedance for antennas of half lengths greater

than h = . 08 X and various thicknesses. For I = 5 , t these values are accu-

rate to about 4%, with accuracy increasing for larger values of I .

King also shows that for short antennas with h < . 03 X the first-order

impedance is adequate, and he derives a particularly simple expression for it.

However, in the range . 03 X < h < .08 X , a second-order expression is still

needed. A more recent study [5] of the short antenna provides this by again

using the iterative procedure, but with an improved trial current. This leads

to an expression accurate to 3% in the range 0 < h < . 08 X for Q > 6

jkh (1 + I k2 hZ)
YO0 60 iEII6

where

a - 3.39. (U-7)

Here it is seen that the numerator is just the first two terms in the power

series fcr tan kh and that the next term can be neglected to the order of 1%.

Therefore

SLj tan kh
(0 O-8)

The substitution of tan kh in the numerator seems reasonable when it is noted

that the final expression has the form of the zeroth-order admittance, although

it uses ar. improved value for .

An approximate expression is Q £2- 2, where a = Un Lh

tThis is a rather thick antenna, with- 16.6.
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3. Short-circuit current i0

The problem of the linear receiving antenna in a plane-wave field has

been solved in terms of two simultaneous integral equations by an iteration

method similar to that used for the transmitting antenna [6]. For the short-

circuited case, this gives for the zeroth-order current at the center:

L _] &E tan kh Z tan 2 kh (U-9)
0 E -j- 6 P k

The quantity in parenthesis is recognized as the zeroth-order admittance [Y 0 ]0.

The zeroth-order induced voltage per unit field is v0

[v] = tan I kh. (11-10)

Then the zeroth-order current per unit field is:

o0 o0 0

This is the same as the actual current for an infinitely thin antenna, but higher

order values are required for thicker antennas. In general, the calculation of

higher order values of induced voltage is just as involved as that of impedances,

and extensive tables do not exist. The accuracy of the zqroth-order values will

therefore be examined by comparison with the available first-order values.

The first-order current distribution on the unloaded receiving antenna

differs very little from the zeroth-order distribution [7], and since the solution

is obtained by iteration, it may be concluded that it is quite accurate and may

be used with the second-order admittance to give accuracy comparable to sec-

ond order in determining the induced voltage. A new formulation of the first-

0v0is a quantity often referred to as effective length, 2 he
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order current is convenient (8].

[iol1( -coo kh h [Y 0  [vo]'I . (11-12)

The I functions can be expanded in terms of the integrals C L(h, z) and

E %(h, z) which have recently been tabulated [9] for certain values of the param-

eters Q6 and h . Using these, it was possible to compute [io]1 and [vo]'

for h = . 125X . A comparison of [v 0 ]1 for this length with [v0] 0 shows the

zeroth-order value to be less than 3% too high for 0 > 8. 6 and about 9% too

high for Q = 7. 8. Consideration of the general behavior of v 0 indicates that

this result is typical of antennas of moderate length (0. 1 < h/ X < 0.Z). [V0]0

can then be used in this region, provided Q• > 8. 6 , with 3% accuracy.

For short antennas (h < . 08kX) a numerical interpretation of Reference

[10] shows that at least for Q = 10 the accuracy of the 0-thorder approximation

improves slightly as shorter lengths are approached. Therefore [v 0 ]o will be

used over the entire range (0 < h < 0. Z X), with estimated accuracy. of at least

3% for Q > 1. 6. It is not known how poor an approximation this is for smaller

Q values, but the entire analysis is expected to break down at Q < 6 where

0. 2/hZ is not < < l and the thin-wire approximations used throughout are not

valid.

For antennas near resonance (0. 2 < h/ X < 0. 3) first-order values for

the effective length are available [10] as a function of kh and Q . The desired

numerical values for the induced voltage can be found by linear interpolation

from these.

Using these values of v 0 and the previously discussed values of Y0

the desired short-circuit current i 0 can be computed with an accuracy of

better than 5% over most of the region.



Section B. Experiment

4. Image method

Rather than study the dipole probe directly, it is more convenient to

investigate a unipole over a conducting screen. By the theorem of images

this is equivalent to a dipole in the actual field plus the image field, and the

same current will flow in the apparent load Zý in both cases (Fig. II-I).

This method has the advantage of removing the transmission line from the

incident field and making it possible to study the effect of the probe alone,

although it is obviously useful for only a selected group of situations.

5. End effect

Referring to Eq. U1-3, it is seen that the end effect constant cz must

be evaluated for the specific situation before the experimental current iL )

measured in the actual load ZL , and the theoretical current i , evaluated

in the apparent load Z' ,can be related. For the unipole over a conducting

screen, the terminal-zone network is simply a capacitance CT in shunt with

the load [ 11], with an admittance given by:

YE T 6. Z8 bYE = jw0 CT = -j CK-• Z 711-

G g

where b is the outer diameter of the dielectric, ZG is the characteristic

impedance, X is the guide wavelength in the coaxial line, and CK = -C7/C 0 b

is a constant which has been theoretically determined and plotted in Reference

[11] (Fig. 11-10. 9). From Fig. Il-Id, it is seen that:

Y = YL + YE * (11-14)

Two different coaxial lines were used, both with a characteristic admittance of

20 millimhos and with matched terminations. The end effect admittances

11-6
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calculated from Eq. U1-13 are -j 0. 17 and -j 0. 54 millimhos, so it is seen at

once that Y& -: YL within 2%, and end effect can be neglected in this case,

at least from the receiving point of view.

In some cases it was experimentally convenient to imtroduce a step in

the diameter of the center conductor where it emerges from the screen in order

to obtain various antennA diameters. The effect of such a step is to place a

shunt capacitance across the load [12], but its value is an order of magnitude

smaller than that from end effect and it may be totally neglected.

Therefore, the current in the load can be measured for the experimental

(unipole) case and compared directly with the theoretical current computed for

a dipole with half the load admittance of the actual unipole (Fig. II-2e).

6. Experimental setup

The experiment is set up in the free-space room against the image plane

with a quarter-wave unipole source and receiving unipole probes of various

diameters (Fig. ll-2a-e). The probe length is varied by starting with a long

antenna and cutting it back, step by step. The frequency used was 600 mc,

and the distance from source to probe 70 cm, which is necessarily short to

avoid any effect of standing waves in the room.

The loading effect of the probe on the primary antenna is readily esti-

mated for the worst case, when both are X/4 long, and even in this case the

error introduced is no more than 1. 4 %t, while for the shorter probes, which

are more interesting for measuring purposes, it is much less.

Note that from the transmitting point of view, YE is seen in shunt with the
antenna admittance Y0 , which varies from about 10 down to 0.2 millimho
for the antennas used. YE is clearly not negligible for the transmitting case.

tThe input impedance to the transmitting antenna in the presence of the probe
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A worse effect with the probe so near the source is the curvature of

the incident wave front. Even for the longest probe, this only produces a

variation of 1%/ in the magnitude of Ell along its length, but there may be an

appreciable phase lag towards the end of the antenna, so a correction must be

made. This is done by assuming an incident field of uniform phase equal to

the mean value of the phase along the antenna. Since the largest correction

obtained in this manner was 3. 4 degrees, this estimated correction was deem-

ed adequate.

7. Normalization

In order to get an absolute measurement of the magnitude of probe

sensitivity Is[ the experimental data must be normalized to Ell = I volt/

meter incident field and also normalized for the absolute receiver calibration

constant.

The theoretical electric field at the probe position (kh = 0, ke = 5.8),

is E11 = 38.3 db above I volt/meter for a current of amplitude I amp. and a

becomes equal to [13] ZI Z (1 Z2) where the self impedance ZSI
z sl

equals approximately the impedance with no parasite, ZSI & 73 + j 42, and
according to a zeroth-order calculation the mutual impedance Z1 2 E 6 - j 12.
Therefore, the change in impedance is:

z -z
Z10 "Z0' Z 12121 .027

0 1= 1 0

and the reflected voltage in a feed line matched to the isolated antenna is:

IVrI . lIVi !4;I "ZO .014 IV'il,

which would produce 1.416 error in the measured current.
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cosine distribution* on the source antenna. If the maximum current on a trans-

mitting antenna is Im Ithe total radiated power is 12 Re . But Re = 73.13
m mm

ohmt for a linear dipole of half length h = X/4 and a cosine distribution of current,

and half this for a unipole, so that in the theoretical calculations a total radiated

power PA = 36. 57 watts has been assumed. The actual power incident on the

transmitting antenna can be measured using a thermistor power bridge and a

calibrated directional coupler. Since the VSWR looking into this antenna was

only 1.02, only . 01 % of the power is reflected, and the radiated power PR is

essentially equal to the measured incident power PT ' Therefore, the experi-

mental current can be normalized to the theory by multiplying by a transmitter

normalization constant:

EdCT Eassumned )1;:A • (11-I15)

= actual -

To calibrate the receiver in terms of current in the 50 ohm line at the

probe, loss in the connector between the probe and the coaxial cable to the

receiver is assumed negligible. t Then a known calibration power input into

this cable, Pc , implies a calibration current Ic = /T7W, and if the out-

put meter reads Mcal. the receiver calibration constant is:

CR = c - " (11-16)
cal. cal.

For a discussion of the current distribution of the source and its effect on the
field see Appendix A.

tThis value is found by integration of the far-zone field (Reference [14]).

tThe loss through two such connectors placed back to back was measured as
less than 0. 1 db.
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The combined calibration factor to be applied to the receiver meter

readings to obtain the normalized probe current is the product of CT and

Cl Ror

K(db) CT (db) + CR (db) . (11-17)

If the calibration power is taken from a 28. 6 db directional coupler in the

transmitter circuit, PC = .01380 PT' and:

K(db) - - Mcal. (db) - 30. 1 (db) . (11-18)

K(db) must be added to the meter readings to get Iprobe (db/ lamp.), and

then the theoretical field Ell = 38. 3 (db/ I volt/ meter) must be subtracted

from this to get the probe sensitivity ISI (db/I meter/ohm).* It is felt that

the over-all accuracy of normalization is within 0. 5 db.

No attempt was made to make an absolute measurement of phase, so

the experimental values of arg S were normalized for eacht of the probe diam-

eters used to agree with the theory in the range . 05 < h/X < . 10 where both

theory and experiment are expected to be quite good.

8. Results

The experimental measurements of probe sensitivity S for a unipole

with 50 ohm resistive load are plotted in Fig. 11-3 against h/k for six different

values of probe radius a,/k . On the same graphs are plotted the theoretical

values of S as determined above, and the general agreement in both magnitude

(absolute) and phase (relative) is very good, excluding the region where 2 < 6

*I meter/ ohm is equivalent to I ampere/volt/meter.

tThe reason for normalizing for each diameter separately is that they were
measured at different times, with two different adapters, and with the adapt-
ers sometimes resoldered. Even so, the variation for a single adapter was
less than + 2 degrees for the various runs.
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and the theory is definitely inaccurate. In order to illustrate~better the effect

of varying */)L , the theoretical curves are all replotted together in Fig. 11-4.

For (.02 < h/ X < . 15), the main region of interest for probes, the mean

deviation is 0. 4 db in magnitude and 0. 5 degree in phase, and the maximum

deviation is 0.8 db and I degree.

For . 15 < h/ X < .23 the measured magnitudes average 0.8 db too large,

and the phases lag by an average of 4 degrees, which is a greater discrepancy

than can be attributed to mutual coupling or curvature of the wave front. It may

be that part of this is due to error in normalization of the magnitudes, but the

phase error and at least half the magnitude error must be attributed to the ap-

proximate nature of the theory used.

For (. 23 < h/ X < .28), the region near resonance, two theoretical

curves are presented for the magnitude, one using the zeroth-order effective

length, and the other using an estimated first-order value. They differ by an

amount ranging from 1-2 db, and the experimental points lie between. The

phase curves do not include a first-order estimate, which would make use of

a complex effective length, and the experimental points lag the theoretical by

an average of 7 degrees.

For the very shortest probes (h/X = .01), phase agreement is good

within 2 degrees for a > 6 , but the experimental magnitudes are 2 db below

the theory. This is not surprising since neither the theory nor the experiment

is designed for exceedingly short antennas.

The expected accuracy of the theory is better than 5% (±. 4 db in magnl-

tude and + 3 degrees in phase) over the region (. 02 <.h/ X < . 23) for a > 6.

The relative accuracy of the experiment is + 0. 2 db and + 3 degrees, and the

absolute accuracy (used for magnitudes only) + 0. 7 db, so that agreement be-

tween theory and experiment is quite satisfactory.
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A comparison with the results of Morita and Taylor is interesting [1 5].

They measured the relative power into a matched line from a receiving antenna

of variable length in a constant field, and also the input impedances of the same

antennas when driven. From this they computed an experimental effective

length which was then normalized near anti-resonance and compared with the

first-order theory. In the region h/ X < 0. 25, their experimental values lie

considerably above the theoretical curve, even if allowance is made for the

changes in 0 , but the present measurements suggest that this result is in

error and that the theory is verified by experiment in this region. It seems

quite likely that this error is due to the use of the measured impedance ZSA

as the antenna impedance Z 0 in computing the effective length from the received

power. As discussed above (Section 11-5), the measured impedance in the

transmitting case may differ considerably from the antenna impedance because

of end effect, but it is the antenna impedance itself that must be used as the

source impedance in the receiving case, with the end effect shunting the load.

Since all parameters of their measurements are not available, a quantitative

check cannot be made, but it is precisely in the region where R.SA is small

and IZSAI will differ most from Z0 I due to end effect that the deviation

is largest, and the direction of disagreement is correct for this hypothesis.



Section C. Conclusions

Only general conclusions were drawn for the dipole antenna as an elec-

tric probe, since it was mainly used for a check on the experimental procedures.

The dipole is indeed a suitable electric probe, responding only to the

tangential component of E . The sensitivity S L& a maximum for a resonant

length, slightly lose than 2h = 0. 5 X , but such a long probe responds to an

average field. not the field at a point. Thick antennas are more sensitive than

thin, but it is more difficult to determine the polarization of E with them.

Finally, the agreement between experiment and theory was seen to be

good enough to verify both and allow the use of similar procedures in further

investigations.

11-13
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CHAPTER rn. THE CIRCULAR LOOP AS A PROBE

Section A. Theory

The second type of probe studied was the circular loop, which is the

easiest shape to build, and the one for which the best theory was available [1].

1. The unloaded circular loop in a plane wave field*

Consider first the simplest case, an unloaded loop in a plane wave

field as shown in Fig. rn-la. The incident electric field lies in the z direction

in a plane of the loop, is traveling in the x direction, and its value at the

center of the loop is E i Then:

I(Q) = Ei i(Q) (rn-I)z0

where I(Q) is the total current at a point in the loop and i(9) is a current dis-

tribution function which may be expanded in a Fourier series. t

OD

i(0) = vn Yn cos nO (111-2)

0

where:

v = Zirdfn = (j) - (ird) (Jn - I (kd) - Jn +l (kd)) (111-3)

1 1Y = (111-4)0 jir~o a0

Y =.-- (4-4 n = 1, 2, 3, (111-5)n .j w 0 a,,

The theory summarized here is adapted from the work of King and Harrison
[1].

tFor an irqcident plane wave in a given direction i(G) = i(-9) and the sine terms
are not necessary.

111-1
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and: vn is the excitation voltage per unit field of the nth mode in King's

formulation. These have the dimensions of length and are often

called effective lengths Zhen for each mode.

n (x) is the Bessel function of order n .

n

Yn is the input admittance for the n thcurrent mode.

ý0 = 120w ohms is the impedance of free space.

a is the nth coefficient in Storer's formulation of impedance [2].n

It is convenient to separate the loop currents into two types according-to their

symmetry with respect to the z axis*: a symmetric current IS and an anti-

symmetric current IA (Fig. 111-16):

Is (7 -0) = -IS(a) (m-6a)

IA (' - 9)= IA(). (M-6b)

Therefore

= O EVn v n cos n. (III-7a)

n odd

A(")= zo n Yn cos nQ (II -i7)

n even

I) = ISM + IAM - (M-?c)

The appearance of the electric field in both expressions is somewhat arbitrary,

and due to the assumption of a particular incident field for which Ei = c Bi.z y

This obscures the fact that the antisymmetric current is basically due to the

normal component of magnetic field. An antisymmetric current can only be

Note that symmetric currents at image points in the loop are directed in the
same sense with respect to z, but opposite with respect to 0.
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maintained by an antisymmetric electric field. Therefore:

IA cc E i(-8
A zA" (11-8)

But the antisymmetric field is half the field difference between image points:

zA ( (Ei(x) E i(-x))" (mI-9)

By Taylor's theorem:

EA = I +. (1-10)
x= C

But:

j p. . aE~-j yIVxt -T_ -11(ml)

And the first term in the expansion of E1  is proportional to B There-zA y

fore, since to the first order IA is proportional to the magnetic field itself

at the center of the loop, but only to a derivative of the electric field, Eq.
*

rII-7b can be rewritten more logically:

1A(0) = c B' 0 i v Y cos nQ. (RI-lz)

n even

Equation HII-7a on the other hand is in the best form already since IS is de-

pendent to the first order on the electric field at the center of the loop.

2. The unloaded circular loop in an arbitrary field

Equations III-7a and 111-12 can be reduced to:

This may be illustrated as follows. Addition of a field with constant E
in the xz plane and By = 0 will change only the symmetric current, but addi-
tion of a field with By constant in the xz plane and Ez = 0 will change only
the antisymmetric current. Therefore, it is reasonable to relate the symmet-
ric current to the electric field and the antisymmetric current to the magnetic
field even though the two are never strictly independent.



111-4

SB (c B ) (IUI-13a)

Is(0) = sE (E 0) (11I-3b)

where SB and SE are magnetic and electric sensitivity constants for the inci-

dent plane wave, indicating the possible use of IA(0) and IS(0) for field meas-

urement.t In order to use the loop as a probe it must be shown that these rela-

tions hold in an arbitrary field, with the proportionality constants SB and SE

dependent on the probe geometry alone.

An arbitrary incident field can be expressed as a Fourier integral of

plane waves:

1(7) 0)(111-14)
-CD

A general direction of incidence has not been considered here, but it is in ref-

erence [1], and the linearity of Maxwell's equations implies that Eq. 111-14

can be combined with a modification of Eq. III-I giving:

I(Q) oc E(r) (IU-15)

which can at least formally be broken up into IS and IA as before. However,

it is obvious that the proportionality constants required will be functions of ki

and not independent of either the wavelength or the direction of propagation of

each plane-wave component in the incident field. Therefore, the probe equa-

tions, MII-14, cannot be extended to a general field, but are indeed restricted

to constant k , a single plane wave.

tin most equations it is conveni.it to write the magnetic field as c B rather
than B , where c is the velocity of light in a vacuum, in order to give the
magnetic field the dimensions volts/meter, the same as E .
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Fortunately,the situation is better than it seems. First, assume that

only B and E are significant in determining 1(0) and 1(w) for the givenyz

probe orientation. * Three situations may be distinguished. In the situation

illustrated in Fig. Ill-I the plane wave travels in the x direction, the electric

field is E , and c B = Ez . A second situation would be a plane wave travel-z y z

ing in the y direction, with the electric field in the z direction and with B = 0Y

A third would be a plane wave traveling in the z direction, with the magnet/c
field in the y direction and with Ez = 0 . If attention is restricted to the cur-

rents at I = 0 and I = w it is only necessary to consider these three types of

fields. It will be noted that their Fourier integral can still represent an arbi-

trary distribution of B and Eyz

For any field the Taylor series can be written in the plane y = 0

8E 8E

E E + X(-- )+ z(-r~ zEz -- o ÷ xlT 0 -l-n O0

12 Ez Z aEz a2E+ 7-x + Zxz(w-~-H4
aBx 0 8 z 0 0

13 a 3 Ez 3 a 3 Ez 2 8 3E z 2. a 3E z
+ [x (-.--. ) +z (=) + 3x z(--,32 + BE 2)

ex 0 a z 0 ex Oz x 0 a ]
+ ''' .(//I-16)

Terms with an odd power of z in the coefficient will produce a current such

that I(-Q) = -I(Q) ,which implies 1(0) = I(w) = 0 and they may be ignored here.

This is a reasonable assumption in that Ey, Bx and Bz clearly do not af-
fect 1(0). Ex produces two types of currents: those that are symmetrical
with respect to the x axis and thus are zero at 0 = 0, w , and those that are
antisymmetrical, of which the first term is related to B in a manner simi-
lar to the relation between IA and B in Eqs. 111-9 - 11. The higher order
antisymmetrical terms in the Taylor Weries for Ex must be negligible as in
Eq. IM/-17 for this assumption to be valid.
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Furthermore, for small loops, terms of second and higher orders can be neg-

lected. The criterion for an electrically small loop is dependent on the field:

1 k2 d2 << 1 (M-17)
Z max

wh~ez. ka = for the shortest wavelength required in the Fourier rep-
he•kaxmin

resentation of the field. That is g(k) E 0 for Iki > kmax in Eq. 111-14. Then

for the small probe the effective electric field is entirely included in:

BEE-*E + x(-F.•_) (m-1l8)Ez Ez0

which can be written as the sum of two plane waves:

8 El
E =- [El 0 + X(Tz0 +. . (M11-19)

The wave including EV0 is a plane wave traveling in the x direction as shown

in Fig. III-1 and for which Eqs. rn-7a, b and 111-12 give the induced currents.

The wave including El 0 is a plane wave traveling in the y direction with E"
z

constant over the xz plane. It is readtly shown that for this wave V (0) = 0 and:

(0) = E v Y cos nQ (111-20)I•@ z0" n n

n odd

to the same order of approximation as Eq. M-17.

In summary, the currents due to E' and E" can be superposed, givingz z

for a general incident field:

I = SB(c B 0 ) (I-13a)

is(0) = SE(E 0) (111-13b)

and

IA(w) = SB(c By 0 ) (rn-i3c)
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IS=O = -SE(E)0) (m-13d)

from Eqs. 11-6 so that:

1(0) = 1A( 0 ) + IS(0) (HI -13e)

I(T) ' IA(0) - IS(0) (UI-13 f)

as required by the definitions of IA and IS , and subject to the restriction

IL z $
•"kmax d << 1 , and where SB and S are sensitivity constants dependent

on probe geometry alone:

SB v n Yn (II-Zla)

n even

SE= I vn Yn (Im-Zlb)

n odd

3.. Evaluation of constants
In order to evaluate the sensitivity constants SB and SE it is first

necessary to determine the vn and Yn from Eqs. 111-3 - 5. The Bessel

functions can be expanded in a truncated series valid within . 01% for 2d <

0. 13k:

1kd lkdtr I kd z"p p 1- i (m-zz)

which gives:

V -"j (kd) I1 - 1 (k2d) z (Zwd) (Im-Z3a)

1 -j I (kZd) [1 - 1 (kZd)Z] (Zird) (III-23b)

iA and iS may be written for SB and SE since they are the c-urrents per
unit field induced at @ = 0
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1v41 <_.0004 Iv0  (MI-23c)

v 1 [1  3 -(kZd) 2 ] (Zwd) (III-23d)

v - • (k2d) (Zwd) (M-Z7e)

v <_ .004 Iv, I (m-Z7 f)

Storer [2] gives the relations:

1 Zn 2

a (k2d) (K + K _)-' K (M-24)an=• (n + I n M n

K+i = K n Zn+1 (k2d) + j JZn+1 (kZd) (111-25)

kZd kZd
K Ln Ld -"1 " O.90(x) dx - j 3" dx (M-26)

0 0

where p (x) is the Lommel-Weber function [3] of order p . The Bessel func-

tions can be expanded as before and the Lommel functions can be expanded with

1% accuracy as:

(l x podd
W 4 p

a p(X) -. (UI-zy)

•" --'-' (I - -- "' p even .

p 9 -p

This leads to the following expressions for the admittances Y n accurate to

1% in magnitude and 1 degree in phase for Zd < . 13k :

& j~j 1 (k~d) [Q - 3.52 + 0.33 (k~d)2]) (m-28a)

(ij;g 12 ( T (QZ - 4.85) F ~ (k~d) (U - 5. 65)]} 1 (II2b

1, (C1j~o I" (A6 (91 - 3. 52) - (k~d) (LI - 3. 52)]ý -1 (m48c)
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3 9 1 65 (2Id-28d)

where Un = 1n Higher-order admittances could also be calculated, but

they remain small, and when combined with the negligibly small higher-order

values of the excitation voltages vn do not add appreciably to the current in the

unloaded receiving loop. They do, however, combine to change the input admit-

tance of the driven loop, which will be discussed below.

The total current in a driven circular loop is [2]:t

OD

1(9) = V Y Yn con nQ (111-29)

0

which can be rewritten:

3

I(0) = V [IYn cos nO + Y4 cos 49 + Y4, g(a)] (111-30)

0

where Y is an admittance representing the higher-order modes and g(G) is

the normalized distribution function for the higher-order currents, which is

small except near 0 = 0 where it equals 1. The terms under the sum have

already been expressed in Eqs. 11I-28, and Y can be computed in the same

manner from:

Y & C-j [16 (a - 6 ." 2.)"l (M1-31)

This Q2 must be distinguished from Q for the dipole and from the £2 (x)
above. P

tA very recent paper by Wu [4] examines this problem more rigorously, but
unfortunately, since the results are not in a form ready for computation, it
was not possible to use them. There is, however, no reason to suspect that
they will change the results very much for the very small loops used here.
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Storer derives an expression for Yý g(Q) in integral form by various

manipulations valid for Zd < 0. 8X.

n [J) + (4) J?()] (I-3Za)Y, g01) --~ In no0

where J1 (Q) and J2(0) are somewhat complicated definite integrals which he

has calculated and plotted. Only the following values are needed:

In N0

In) N 0 In 5 e-x Zd ý-. 577Z
S(0) - dx where N0 = e, (-3b.)

-cO

J I (1) = -. 0 71 (WI-32o)

J 2 (0) = . 333 (IMI-33a)

J 2 (w) = -. 023. (I1I-33b)

Using these, Y. g(0) and Y g(ir) can be computed for each loop size. For the

single loaded loop, Eq. 111-30 gives:

3

Y = Yn + Y4 + YL (11-34)

0

for the input admittance. For 12 1 10 , direct computation shows that the error

involved in Y by neglecting Y4 + Y is less than ZO% for Zd < 0. 13k and

drops rapidly to 2% for Zd = 0.06k.

Since g(0) = I and g(ir) " 0 , the symmetrical and antisymmetrical parts

of Y are equal, and for the doubly-loaded loop:

= (Y0 + Y 2) + Y4 + I Y (UI-35a)

See below, Eq. 111-47.
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YS (Y 1 + Y3 ) +÷Y. (M1-35b)

Here computations show that for 0 -. 10 the error involved in YA by neglect-

ing Y4 +•1 is less than 8% for Zd < 0. 13)k and drops to Z% for Zd <0.06k.

The error involved in YS by neglecting 1 Y in about 30% and does not vary

much with loop diameter.

Y was evaluated for the various loops actually used, and because it

only enters in a aumn with YLO it was necessary only to include it in the resis-

tive loaded case, when YL had relatively small values, and then only in the

computation of YS I since the largest loop used had Zd = .05)X.

4. Singly-loaded circular loop

The series equivalent circuit of the receiving loop with a single load at

0 = 0 is similar to that of the dipole, discussed in Section 11-1 above, and is

shown in Fig. ifI-id. End effect must again be included, and its actual values

will be given below in Section I1-7. However, for simplicity in the following

discussion it will be neglected. It may be included ;n any equation here by re-

placing load quantities ILs YL ' etc., by apparent load quantities I , Y'L.

The relationship between a full loop in free spacA and a half loop against an

image plane is essentially the same as that between the dipole and unipole

which has been discussed fully in Section 11-4, so the discussion here will be

in terms of the complete loop although it actually applies to both situations.

From the point of view of the current in the load it is permissible to

use the shunt equivalent circuit of Fig. m-le. This gives the current in the

load YL:

YLI LO L I0 (M-36)
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where Y is the input admittance of the loop when driven and 1I0 is the short-

circuit current at 0 = 0 from Eq. rn-i. Noting Eq. MI-13a, b, and defining

the load admittance ratio for the singly-loaded loop as:

r()= •L (MI-37)

L

Equation I1-36 can be replaced by:

I = r(1 ) SB(c By0) +r() Sr(Ei 0) (rn-38a)
LO BCy0 SE(E

= s) (c B01 )+S~l(E 0). (M-38b)5B (c E0

This is the basic probe equation for the singly-loaded loop with load YL ' It

shows that the load current is made up of two components, one proportional to

By, and the otifr to EZ. It shows also that a magnetic and an electric sensitiv-

ity constant can be defined for the loaded probe by multiplying the unloaded

sensitivity constants of Eqs. rn-21 by the load admittance ratio of Eq. rn-37.

S(l) = r(l) SB (flI-39a)

S(P = r(l) SE . (1I/-39b)

The effectiveness of the loop as a magnetic probe depends upon the relative

size of these constants, so it is convenient to define an error ratio:

(1) E E (M-40)

SB

which should be minimized for best operation.

If the loop is rotated 180 degrees, placing the loadat 0 = w , Eqs. III-

13e, f show that:

I S= S (c ")- () (E) . (r-41)
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Comparison of Eq. 111-41 with Eq. -I=38b suggests that S) and S(1) may be
B SE mab

measured by measuring ILO and I LM consecutively in a known field and adding

and subtracting the results, the method which was in fact used. It further sug-

gests that a pure magnetic or a pure electric response might be obtained by

measuring I O and I L simultaneously and adding or subtracting them electri-

cally.

5. Doubly-loaded circular loop

The above considerations lead naturally to the concept of the loop with

two loads, one at 9 = 0 and one at 0 = w . However, because the current at

more than one point must be considered, a somewhat different analysis must

be used. Only the case of equal loads will be studied since there appears to be

no advantage in using unequal loads over using a single load.

The use of arbitrary loads leads to currents of the form:

I =S cB i Ei
IA 1 y + S12 zO

Is =S c Bi EiS 1 YO 22SZ zO

where S1 2 = S21 = 0 only in the special case of equal loads. It is seen at
once that IA and Is are not useful as measures of B and E in the general
case. The total current in the load at 0 = 0 may be written:

1 1
c B 0 (YL + 2Ys) SB + ES

= z0 (YYr + 2YA) SE
Y Lir + YA + Y S + =- (YL~r YA + YI~r YS + 4 YA YS)

LO

Inspection shows that a particular choice of load can be made to eliminate the
response to E or that to B . For example, setting YLw = -2YA leads to

(Y 0(w + ZY) Yi
L = Ys A) (YLO A) B] c B"

from which it can be seen that Ii is indeed a measure of B alone, as de-
sired for a magnetic probe. The-Iimitations of this method are purely practical:
the accurate measurement of Y for a particular loop and the accurate pro-
duction of Y = "ZY 4 It mig'*t be possible to start with an estimated value
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In Fig. Ill-2a, the doubly-loaded loop is indicated ..chematically, and

in Fig. III-Zb the loads have been replaced by equivalent generators, using the

compensation theorem. This leads to an equation for the current at any point

in the loop as the sum of the currents due to the unloaded receiving distributions

and the transmitting distribution due to the two generators:

I(G) = iz0 i(Q) - IL0 ZL w() - ILi ZL w(Q + W) (111-42)

where i(G) is the unloaded receiving distribution given in Eq. 11-2 and the

transmitting distribution is given by a Fourier series in Storer's formulation

[2]:

00

w(0) : • + n cos n (111-43)

which can be rewritten in terms of admittances as:

00

w(0) = Y n cos nO . (111-44)

0

Therefore:

'LO z0 Ivn n - 'LO ZL n - 'Ln L n

0 0 0

ILt Ei0 (-)n Vnyn L- IOL ZLI (-l)n Yn -ILtrZLZYn" (III-45b)

0 0 0

of YT and then make adjustments using a procedure similar to that for bal-
ancing the balanced loop, but if this is done, the method has no advantage over
the use of balanced loads, and the disadvantage of being somewhat more d~ffi-
cult to achieve physically. This is because it is easier to adjust line stretchers
and attenuators to balance two currents than it is to adjust tuners to present a
particular impedance at a remote point with a (possibly lossy) length of line
intervening.
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These can be combined to give:

A= (IL I+L) = L vn Yn Ei (m-46a)
YL + 2  Yn n even

n even
Y L

IS (I - I)= Z I Vn Yn E.o ("M-46b)
YL + 2 1 Y n odd

n odd

Recalling the substitution of c Bifor in the atiaymmetric current.

Eq. 111-12, using Eqs. M11-13, and defining:

YA Yn (III-47a)
n even

YS I Y. (mI-47b)

n odd

and

r(2) L
A Y. (Iii-48a+

Lj A

(2) YL

rS = L + ZYs

the antisymmetric and symmetric currents can be written:

IA r(2 ) SB (c B (III-49a)

IS r•) SE CE'o) (1M-49b)

and

A=S) (c BO0) (1.1-50a)

1S (E(0) (III-5Ob)
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The similarity between these and Eq. HII-39 is obvious. Again magnetic and

electric sensitivity constants are obtained by multiplying the unloaded sensitiv-

ities by the load admittance ratios, but here the two load admittance ratios

are not equal.

S = ( rAM SB (UII-51a)

S (2)r (Z) SE (III-51b)E S E

Again a loop error ratio is defined:

1(2) (I(-S2)

B

It is to be remembered that the current in either load alone still contains

both electric and magnetic components with their relative sizes governed by e(Z),

but, using an external circuit to add or subtract ILO and ILw ,it is possible to

obtain 2 1A , which depends on the magnetic field alone, or 21S , which depends

on the electric field alone. Thus, although the error ratio of the probe is still

finite , the error of the entire system can be theoretically zero. In practice

it is, of course, limited by the accuracy of the adder (or subtracter) circuit. t

Furthermore, it is quite possible to use both the adder and the subtracter at

once and have one output dependent only on B and another dependent only ony

E z simultaneously.

A summary of the probe constants for very small circular loops is given

in Table III-1.

In fact 1'(2)1 > 1 I[ in most cases as will be seen below.

tThis is discussed in Chapter I, Sections 13 and 14.



Section B. Experiment

6. Experimental setup

The circular loop probes were studied by the image method as was the

electric dipole. Half loop probes were mounted against the image plane in the

free -space room with a quarter -wave unipole source at a distance of 1. 4X.

Despite the closeness of the source, a test of probe loading by moving the source

showed that even the largest probe does not load the source antenna measurably.

Theeffect of curvature of the wavefront was less than 1% on the magnitude and

0.5 degree on the phase of E0 and c BN . The wave differed from a plane wave

in that [E11[ is 2% smaller than Ic BN! ,and there is a radial electric field

E with a magnitude of 3% of E11 , For the smaller probes, the plane-wave

approximation was even better, so the only account taken of these effects was

the use of the actual (near-zone) theoretical values of both E11 and c BN for

normalization of the measured currents.

In order to measure the probe sensitivities, the probe current was meas-

ured with the load towards the source, and with it rotated to the opposite position

as shown in Figs. M11-3 and discussed in Section 111-4 for the singly-loaded case.

This procedure was also followed in the doubly-4oaded case as shown in Fig. m- 4

to obviate the need of balancing the two outputs for each new probe. A check for

one probe showed that this gave identical results to the slower method of using

the balance circuits for this measurement.

7. End effect

End effect is considered in essentially the same way as for the unipole

(Section U1-5), but here it must be considered more thoroughly because of the

larger values of load resistance used.

111-17
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The theoretical probe constants for comparison must now be calculated

using the modified load admittance:

YL = YL + YE (11-14)

where YE is the end effect admittance given by Eq. 11-13. Calculation shows

that YE is negligible within 1% in YL for all loops using a 50 ohm line as

load. When the load resistance is increased by using resistors in the line, YE

becomes as large as 8% of YL if the value of YE calculated without the resis-

tors present is accepted. The shape of the resistor is too complex to allow the

end effect to be computed exactly in its presence, but a qualitative examination

of the effects present (thinner center conductor and higher dielectric constant)

indicates that it will not differ in order of magnitude, and that it will be smaller

if anything. Nevertheless, this seemed too nebulous for calculation, so no end

effect correction was made, and it remains a possible source of error for the

larger loads.

In the calculation of sensitivity constants the admittance ratio is calculated

from an equation of the type:

r - L (111-53)YL nrn Y L + Y n (-

If the sensitivity constants are defined in the presence of end effect so

that they refer to the current delivered to the actual load and not the current at

the base of the antenna, Eq. 111-53 must be replaced by an equation of the type:

r' L =L+E (m- 54a)
nYT-+Y Y +=

L E L E n

(M-54b)

L+ E +n

where it is seen that the only difference is the presence of YE in the denomi-
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nator. Since YL is predominantly real and Y is imaginary, the maximum

error in using rn instead of rn is 1% in magnitude and 4 degrees in phase,

so that the error in neglecting YE is less than it seemed at first, and quite

comparable with other errors in the experiment.

8. Normalization

The normalization was carried out in the same manner as for the unipole

(Section 11-7) with the addition that the theoretical value of c BN is assumed as

3.8 db/ 1,volt/meter while Ell is still assumed as 38.3 db/ I volt/meter as

discussed in Section 111-6. The over-all accuracy of normalization remains at

0. 5 db.

9. Load resistors

In order to study the effect of varying load resistance on the probe sen-

sitivity constants, various resistors were inserted in series with the center

conductor of the coaxial line where it joins the loop (Fig. 1-6). The resistors

used were ordinary Ohmite 1/Z watt fixed composition resistors.

Since their high-frequency operation may differ greatly from that at

low frequencies, it was necessary to measure the input impedance and the

transmission coefficient of each resistor when mounted in operating position.

Since two similar coaxial fittings were used to mount the image loops, these

were removed from the mounting disc, one used as an adapter and the other,

with a resistor inserted and the coaxial line to the receiver as load, was used

as the unknown load. A variable short circuit was made to fit the open end of

the first adapter which allowed the determination of its scattering matrix by

Deschamps' method [5] (Fig. ILH-6a). Then the impedance of the resistor and

the line were measured through the adapte: junction [6] (Fig. IU-6b). The
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measured resistance and reactance are plotted in Fig. 111-7 against the nominal

resistance of the resistor plus 50 ohm line.

The transmission coefficient K of the resistor treated as a two-port

network was also measured using the setup of Fig. II-6b, where K = Im/1 0

Redrawing the circuit as in Fig. III- 6 c, the equations can be written:
0OD

:m~ 2 = iS 1 (Sl I Uan (III-55a1

0

(S 1 1 U,,)n - I* SI (Sl 1 U 2 )n (III- 55b)

0 0

where: I is the total current in the matched load,
m

I is the total current at the input to the resistor,0

Ii is the current in the first incident wave,

S. are the elements of the scattering matrix of the resistor,

Uzz is the reflection coe-ficiený looking back toward the source.

Therefore, the transmission coefficient is independent of UZ2 :

S11K = 2: 1" (M1-56)

First, Im was measured with no resistor, in which case S = 1, SI1 = 0

giving:

Ito = I (111-57)

Second, I was measured with the resistor present, giving.

ml
00IAl fal wl $e s(Shu U2 2 )n " (rIs-rs)

A fairly well matched source is required, in which case higher order terms in
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U22 can be neglected. In the present case IU221 = .06, so to a good approx-

imation:

Iml I (21 (+Sl1 U2 2 ) (1-59)

or, combining with Eq. 111-57 and solving for $21

S 1  I 'ml (1 +S1 U22f 1  (M1-60)
mo

SI 1 is known by measurement of the load impedance of the resistor and line

and U22 is known from the scattering matrix of adapter junction number 1,

since the circuit ahead of that is matched. Using these values, Eq. 11-56 can

be solved for K .

Actually, K' = l/K was used as a correction factor to apply to the

output meter readings to give the current flowing into the resistor, which is

the current that would flow in a load attached directly to the loop.

10. Results

The experimental points fall on smooth curves with very few exceptions,

so random errors due to probe construction and variations in experimental de-

tails were negligible. For loops with (. 02 < Zd/ X <_. 10) the theoretical sensi-

tivities are expected to be accurate to 0. 1 db and I degree, but for smaller

loops the one dimensional analysis breaks down since a becomes too small.

The experimental values may have systematic errors of 1 db and 5 degrees

made up of: error in load resistance, 1 db and 1 degree; error in phase meas-

urement, 3 degrees; error in amplitude measurement, 0. 3 db; error due to

See this effect for the unipole, Fig. 11-3.
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incident field variations, 0. 1 db and I degree; and normalization error, 0. 5

db in magnitude only.

The experimental measurements of probe sensitivities SB and SE

for a circular loop with 100 ohm loadt and e/). = 1. 984 x 10"3 are plotted

in Fig. 111-8 against loop diameter, Zd/ X , for both singly and doubly-4oaded

loops. The theoretical values as determined above are plotted on the same

graphs, and the general agreement between theory and experiment is fairly

good. The phases showed a mean deviation of 3 degrees or less and a maxi-

mum deviation of 6 degrees, about what is expected from the possible errors.

The measured magnitudes of electric sensitivity are uniformly low by about

0. 6 db except for the smallest doubly-loaded loops. Considering the very

close agreement between theory and experiment for the sensitivity of an elec-

tric unipole under similar circumstances it seems likely that this is due to

error in the absolute normalization. The magnetic sensitivities, on the other

hand, show experimental magnitudes that are uniformly low by about 1. 4 db

for the singly~loaded and 1. 1 db for the doubly-loaded loops. About 0. 6 db

could be attributed to normalization again, but 0. 5-0.8 db discrepancy re-

mains. This discrepancy occurred in measurements of SB in genezal, and

appears to be inherent in the theory or in the assumptions of the experiment.

Various possible explanations were explored, but none was found adequate.

The plot of the error ratios in Fig. 111-9 shows essentially the same discrep-

ancies, except that no normalization error is present, since it cancels out.

There is no observable normalization error in phase since these were only
relative measurements.

tNote that these were taken using a half loop with 50 ohm load over an image
plane.
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The effect of varying wire radius in shown in Figs. rI-1O, 11 and very

little change is seen in the agreement between theory and experiment as a func-

tion of wire size. For the thickest wire and the smallest loops used, the experi-

mental points diverge from the theory somewhat more than for the thinnest wire

and moderate sized loops. This is to be axpected since the one dimensional

theory is less accurate for thicker antennas.

Figures 111-12-14 show the effect of increasing load resistance, with

probe sensitivity and error ratio plotted againat nominal load resistance. Fig-

ure UII-7 gives the actual load impedance for a half loop as a function of nominal

load resistance. The values must be doubled for the complete loops. The meas-

urements were made using loops with thick wire of the same diameter as the

resistors. Measured magnetic sensitivity averages 1 db below the theory, but

deviates from this considerably as the load resistance is increased, with values

for small loops dropping as much as 2. 3 db below the theory and values for

larger loops increasing even to 0. 5 db above the theory. The phase of S (2) for
B

the doubly-loaded loop consistently leads the theoretical values by 5 degrees,

but the measured phase of S(l) for the singly-loaded loops shows a variableB

behavior between lagging the theoretical phase by 3 degrees and leading it by

5 degrees. The electric sensitivity agrees closely in magnitude with the theory

for small loads, but shows variable and increasing deviation for the larger loads,

reaching as much as 0.5 db above and 1. 5 db below the theory. The phase of

SE2) agrees within 1 degree with the theory for small loads, but shows a steady

increase in deviation with increasing resistance until it leads by 5 degrees for

RL = 800 ohm. For the singly-loaded loop, arg SE) shows variable behavior,

but the deviation tends to be greatest for large loops and the experimental value

leads the theory by as much as 12 degrees in one case. The measurements of
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the error ratio i shown in Fig. III-1I show that -(1) is essentially inde-

pendent of RL as expected. On the other hand, 1(2) does not show a con-

stant difference from the theoretical curve, but one that varies systematically

in a way that increases with the size of the loop and with the size of the load.

This is clearly due to the variation in S(Z). A look at the curves narrows

down the source of error to the admittance ratio r(s) , but it is not YS

((1)since that would affect e), and it is not Y' as that would affect S B and

S(E2) in almost the same way. Furthermore, it is not due to end effect, which

would be worse for small loops than large. The size of this deviation is with-

in the tolerance of the experiment, but it is unfortunate that its source cannot

be specifically named. Possibly it is due to some of the assumptions made in

correcting for the transmission from the resistor to the receiver. The phase

of E(Z) varies with RL as expected.



Section C. Conclusions

11. Conclusions

A look at Figs. 111-7, 9, and I I leads to several conclusions about the

loop as a probe, since operation as a magnetic probe is enhanced by a low

error ratio IEd .

For a singly-loaded loop, the error ratio a(') is independent of load

impedance, and for convenient wire radii, it is independent of wire size as

well. However, the error ratio decreases markedly with loop diameter, going

from about 80% at 2d = 0.1 X to about 8% at Zd = 0.01 X. From this it is

concluded that a singly-loaded probe should be smaller than 0.01 X in diameter

if it is in a position where the electric dipole mode may be excited.

For a doubly-loaded loop, there is a minimum error ratio of about 55%

for a loop diameter of about 0. 04 X. The error ratio E(2) is a function of the

load impedance and the wire size, with small wire and small loads reducing the

value of e(Z). The measurement error in a system using the doubly-loaded

loop is much less thaln e(2), by an amount dependent upon the isolation between

modes in the balun detector system. If this is accurate to 20 db, the over-all

error ratio would be 6% for a probe of optimum size, 2d = 0.04X , as good as

a singly-loaded probe of diameter 2d = 0. 005 X . I the balun detector can be

made accurate to 30 db, the over-all error ratio drops to 2%, as good as a

singly-loaded probe of diameter 2d = 0. 002 ) , very small indeed!

I1-25
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TABLE H!I-I

Probe Constants for Small Circular Loops

(Approximate Expressions for o, < < d2 , 4k d2 << 1)

Single Load, YL

MY (-Ld)SB YL " j [ 3Ok (Zrd) (91 - 3. 5)]" "00 "3.T

- y L ( j 2 (Z(d) 0

YL - j [30k (Zwd) (a - 3.5)]

Tj .(2id)

Double Load, YL each

S(B2) ,_ L (-2wd)
B Y L - j. Z [30k (2wcd) (Q2 3. 5)]"I1 Z0(92 - 3.5)

S (Z) . YL j Z ýZwd) z

E YL + j 2 [30ir (Q2 - 3. 5) ;]I •(p2 -35)

LL

1- 5 15k (Lfd) (5 - 3. 5 )] -j T(2d)]



I
CHAPTER IV. THE SQUARE LOOP AS A PROBE

Section A. Theory

I . Rectangular loops

The square loop is only a special case of the rectangular loop, but as

previous studies [I ] have shown, it is the optimum shape for minimizing the

averaging error for a given magnetic sensitivity in a general incident field.

The criterion for negligible averaging error in a rectangular loop with sides

2c and 2d is the criterion for an electrically small loop in both dimensions,

and is similar to the one for the circular loop, Eq. 111-17:

1 2 1 d2<<I(VI-k c << I and 1k2max d <<1. (IV-

It will be shown below that for small loops, the magnetic sensitivity is propor-

tional to the loop area:

ScBz c d . (IV-2)

Therefote, if k max kmax that is, if the highest frequency required in

the Fourier expansion of the field along one side of the loop is equal to the

highest frequency required along the perpendicular side, a square provides

maximum SB with minimum averaging in both directions at once. It is obvi-
2 2z

ous that if, for example, k max > k max the rectangle should have c < d

in the same ratio for optimum operation. In this analysis only the square loop

is discussed, but extension to the rectangular loop is straightforward.

2. The unloaded loop in a plane wave field (Fig. IV-la)

For the square loop, the Fourier expansion used for the circular loop

does not apply since the tangential electric field is discontinuous at the corners.

However, the current can be separated again into symmetric and antisymmetric

IV-I
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modes with respect to the z direction as in Fig. IV-lb:

IS (ist - s) = -IS(s) (IV-3a)

'A (7-st - s) = IA(S) (IV-3b)

I (s) = Is(s) + IA(S) (IV- 3 c)

where st is the total loop perimeter. The symmetric current is again due to

the symmetric electric field E 5i and the antisymmetric current to the anti-

symmetric field EZA and therefore to the normal magnetic field c B . There-

fore:

IS(0) = SE(Ez0) (IV-4a)

I = SB(c B' 0 ) (IV -4b)

defining the probe sensitivity constants as before.

3. The unloaded loop in an arbitrary incident field

As written in Eqs. IV-4, SE and SB are functions of the incident field

configuration, but they may be considered constants of the probe geometry alone

for electrically small loops with:

k da << 1. (IV-5)1max

The justification for this is the same as in Section 111-2 for the circular loop.

4. Evaluation of constants

The probe sensitivity constants SE and SB must now be derived.

From Maxwell's equations and the definition of vector potential, an integral

equation can be written for the contour of the loop, where a is the area and

s is the perimeter:



IV-3

The magnetic field is the sum of the incident field and the :eradiated field due

to current in the wire:

- = ]gi + -jr (v7

from which:

-j(,••i d-&= i - is' + jw Sr . d-•. (IV -8)

In the integral formulation any contribution of IS vanishes, and Ohm's

law for the antisymmetric current gives:

EA =IAZi . (IV-9)

From Helmholtz's integral and the definition of the vector potential:

-r -.0. r0RO e -jkR _.
Br -v xr A V x• 4- _W (IV- 10)

and by substitution in Eq. IV-8:

jW 0  e-jkR (.1
_jw I]i •= iZids +•Ad. 1s.(09ll

For a small enough loop the current around the loop is a constant, and

for the small circular loop the dominant antisymrnetric term in the Fourier

series for the current is a constant current. Therefore, the zeroth-order

antisymmetric current in the square loop is also assumed to be a constant so

that IA can be brought out from under the integral sign in Eq. IV-ll. When

this is done, the remaining integrals are by definition the (low frequency) input

impedance of the loop when driven:

I = z "•o -e IV-eJkR.
0=zOds + j -4- __ s I 2
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For small loops, as has already been shown from the Taylor series

expansion for the incident field in Section 111-2:

&Bii r8 B r Bi

B' -I B' + + z [--] ,(IV-13)

and Eq. IV-1i may be solved for IA

IA --* -j a Y0 Bi (IV-14)

Comparison with Eq. IV-4b gives:

SB = -j k 1 YO" (IV-15)

This is the first term of an expansion similar to Eq. III-Zla. There, for the

circular loop with Zd < . 13X , the next term in the series produces less than

a 4% correction. Presumably, Eq. IV-15 is also accurate to about 4%.

The evaluation of Eq. IV-12 is straightforward [2] when the exponential

is approximated by (1 - jkR - Ik R ). The internal impedance and the radia-

tion resistance are found to be negligible compared to the external self induct-

ance, leaving:

Y " 0(k2d) [f2 -4.32 + 0.37 (k2d)2 ] 1  (IV-16)
0 0 W

where Q = Un 8d

Comparison with Eq. III-21a shows that the excitation voltage per unit

field for the zero mode is

v0 = -j kO, (IV-17)

and

SB" v 0 Y 0 " (IV-18)

This formulation gives no information whatsoever about the symmetrical

current Is , which vanishes in the line integrals of Eq. TV-1 1. For this purpose
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the loop can be broken at the two points x = 0 where IS = 0 and considered as

an array of two U-shaped antennas as in Fig. IV-ic.

The excitation voltage per unit field (effective length) of this receiving

array may be found from the characteristics of the same array when transmit-

ting, using a formula obtained by application of the Rayleigh-Carson reciprocal

theorem to a two-port passive system consisting of the given array with a short

dipole antenna in the far zone field [3]:

vs = 2 s (IV-19)

where FOS is the far-zone field function evaluated at 9 = w/ 2 for the array

driven by symmetric currents only (Fig. IV-Id). By definition:

F 0 ,(-20)OS = IjkR0J 0 zO e

but
d

r -jk 0 both ejkR
[Ee] = - halves -"-R- I z dz (ly-Zi)

-d
from the Helmholtz integrals and the definitions of the potential functions, since

only currents parallel to the z axis contribute to the tangential field at a = 1/ 2.

These three equations combine to give:

d
V c = 2 I dz. (IV-ZZ)

S I zo Y
-d

In order to solve Eq. IV-ZZ, the transmitting distributionjof current Iz (z)

must be known. The problem of the symmetrically driven loop has been solved

by iteration of the integral equations for the current [4] in a manner similar to

that used for the single dipole. The solution gives the current as the quotient
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of two series in inverse powers of the expansion parameter Is " For calcula-

tion of the far-zone field along the midplane the zeroth-order current distribu-

tion should be adequate. This is:

Is1 (0) Bin k Zd - as) (IV-23)ISs =S(0 sin k 2d

which is substituted into Eq. IV-22, leading to an expression for the symmetric

excitation voltage for the entire loop:

2 cos kd - cos k 2d
VS = I sin Rd (IV-24)

The same theory gives the first-order symmetric admittance of the en-

tire loop:

YS L (sin k 2d D B I(O)/•)J (IV-25)

where, assuming that o2 << d2 :

S = IC#(2d, 0) + C2d(2d, 0) - 2 C2d(d, 0)

2 e -jk'd e-jk2 e -jk VJ3=
_ •[(- - + - ) sink Zd - e sin kd]I (IV-26)

with

h - j k /'T7Zý
Ci(h1 0)= e cos kZ dZ (IV-27)

-h Z + i7

Integrals of this form must be evaluated by numerical methods, and have not

been tabulated for the small values of h involved here. For small kd , these

integrals and the other functions in Eq. IV-26 can be expanded in power series.

Examination of the second and third-order terms shows that they may be neg-

lected within 6% for 2d/ X < 1. 25. The first-order term is zero, and the

zeroth-order value of Is is:
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is 2 sinh -1 .•d. 1.786 (IV-28a)

which may be rewritten for a' < < d as:

S• Q - 3.172. (IV-28b)

Calculation shows tjat the numerical values of is are rather small, ranging

from about 3 for sm~ll loops to about 8 for the largest loops used. For this

reason it would be nocessary to evaluate D1 and Bl(O) in Eq. IV-25 to get

better than 25% accwracy in the impedance. Unfortunately, these are very

complex functions iilvolving small differences of large quantities, which are

mostly integrals that must be integrated numerically. Since this study was

not concerned with the input impedance of a symmetrically driven loop as such,

but with its over-all behavior as a probe, it was not felt that undertaking such

a large problem in numerical analysis would give results of value in proportion

to the effort involved. Therefore, it was decided to use the zeroth-order sym-

metric impedance. In this case, a small loop approximation could again be

made, leaving:

ir k 2d (IV-29)

with 25% accuracy, and where T_ is to be evaluated using Eq. IV-28b. The

electric sensitivity of the square loop can now be written,

SE = Vs YS (IV-30)

where vS is given by Eq. IV-24 and YS by Eq. IV-29.

5. Singly-loaded square loop

The use of a single load with a square loop may be dealt with in the

Note that this analysis has formally included all the symmetric modes of the
Fourier series approach, although the use of zeroth-order approximations is
no doubt equivalent to neglecting most of the higher modes.
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same way as for the circular loop, using the same equivalent circuit. The cur-

rent in the load is again:

I= S' c Biy+0S E i0 (III- 38b)
L B yO0 E z 0113b

where the loaded loop sensitivities are given by the products of the load admit-

tance ratio and the unloaded loop sensitivities:

SB) = r(I) SB (III-39a)

SM = r(1) S (III-39b)
EE

and where the load admittance ratio is given by:

r(1) _ L (111-37)
L

Since Y is the total input admittance of the loop when driven, it is the sum of

the admittances of all the individual modes connected in parallel:

Y "- Y0 + YS" (IV-31)

The error ratio for the singly-loaded loop is again independent of the

load impedance

= E (111-40)

SB

6. Doubly-loaded square loop

In this case the analysis could, in principle, be carried out using the

Fourier series for the current as was done for the circular loop. However,

the complete Fourier series has not actually been derived, nor is it needed,

for the results depend oaly on the unloaded loop sensitivities which have been

obtained by other means, the symmetric and antisymmetric admittances, for
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which at least zeroth-order approximations have been derived, and the load

admittance. The results are:

I (I + 1 (2) c Bi (IV-32a)

I5 t '~L1+' Sm' E, I (IV -32b)iS Z (ILI + E~z --s X i0 •VS

where

S(2= rA(2) B (III-51a)

S(2) (2SE =r E(I-1b

r = YL (III-48a)
L A

r (2) YL (1148b)
= YL + ZYS

The symmetric admittance YS is determined by Eq. IV-29, and the antisym-

metric admittance YA is approximated by Y0 P the admittance of the zeroth-

order mode, from Eq. IV-16.

The error ratio for the doubly-loaded loop is a function of the load admit-

tance:

r(2) S Y + 2Y
S E L+ZYA (1) (IV-33)

'A -B

The same remarks as in Section 111-5 apply to the system error ratio as distinct

from the loop error ratio.

A summary of the probe constants for very small square loops is given

in Table IV-1.



Section B. Experiment

7. Experimental setup

The square-loop probes were studied by both the image method and the

free-space method.* The discussion of the image method for the circular loop

applies, and this was the basic method for determination of the sensitivity con-

stants of the probes, since it best duplicates the theoretically assumed conditions.

However, in both cases the probes actually used were not exactly* square, but

had rounded corners, which required some modifications to the theory, as dis-

cussed below. The image loops could have been made with square corners, but

since the free-space loops could not, t they were both made the same shape for

better comparison. The free-space probes have the additional complication of

the exposed transmission line, which will also be discussed below.

8. Normalization, free-space method

The free-space measurements were made in two separate runs using

the near-zone field of a dipole as the incident field. A continuous run used all

the probes at a given point, and a second series of runs used a single probe at

various points. The first run was normalized absolutely by calibrating the sys-

tem in a manner similar to that used for the unipole (Section II-7). The balance

It may be wondered why only the square, and not the circular loop was studied
by the free-space method. The answer lies in the fact that the square loop
could be aligned more readily with a given direction, and that no additional
information was to be expected from doing both types of loops.

tThe image loops are solid wire connected through a hole in the ground plane
to the load, while the free-space loops use an internal coaxial line to connect
the gap (load) to the external line. This internal line must be bent to shape in
order to avoid internal discontinuities.

IV- 10
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circuits were adjusted for the most symmetrical loop (the next to largest), and

then left unchanged during the run so as to preserve the normalization constant.

This introduces no error for the singly-loaded loops, but a small unbalance error

for the doubly-loaded loops. The mean error is 0. 1 db and 1 degree and the

maximum error is 0. 3 db and 7 degrees as estimated from the change in balanced

current under 180 degree rotation.

The runs using a single probe at various points were all normalized using

a constant obtained by comparison with the first run. Although the balance cir-

cuits were adjusted for each loop, only one side (one attenuator and one line

stretcher) was actually changed in the process. The normalization can then be

considered to apply to the other side of the balance circuits, while the adjust-

ments merely correct for mechanical asymmetries in probe manufacture. This

method of normalization is as accurate as the mechanical tolerances of the probe

allow. The purpose of these runs was to verify (relatively) the results of the

first run, which only used measurements at one field point to allow its accom-

plishment in a reasonable length of time.

9. Incident field, free-space method

The most reliable points for the free-space method were quite near the

source (w., the ke = Z. 0 and k = 4. 4 ellipses) because of the low value of scat-

tered fields in proportion to the desired incident field. Despite the extreme

nearness of the source, the presence of the probe produced negligible change in

the input impedance of the source antenna. In fact, it was only for k e< 1.6

that probe loading was appreciable.

The field in this region is not very much like a plane wave, but could be

expanded in terms of plane waves with a degree of accuracy as described in the
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theory. From a practical standpoint this means that the values obtained where

the field is slowly changing (off the axis of the antenna) are the most reliable.

An additional complication is the response of a practical probe to the

cross-polarized component of electric field. This has been studied in some

detail by Dunn [5] and was not the subject of the present investigation, but it

did prove to be a limiting factor in probe accuracy. The sensitivity to the cross-

polarized component of E_ was estimated as 20 db below the sensitivity to the

parallel-polarized component Ejj and this limited the depth of null which could

be measured.

10. End effect

High values of load impedance were not used with the square loops, so

end effect was negligible for the receiving situation.

11. Effect of image plane, free-space method

The use of a probe near but not against an image plane is an interesting

problem which remains to be investigated. Some theoretical work has been

done [6], but an order of magnitude calculation is sufficient for use here.

The current induced in a short receiving dipole of half length h is ap-

proximately:

Skh Ei (IV-34)
0 (Q -3.4)

The reradiated field along the midplane polarized parallel to the axis

is:

Er 6 1 1thIVi3t

and along the axis it is:
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r 60 1
S= 0-o(4 4 (- - Z. (IV-35b)

From these equations it can be deduced directly that the field at a probe

due to reradiation from its image is less than 2% of the directly incident field

if the nearest point of the probe is at least a distance h from the image plane,

for any probe orientation. Therefore, it is assumed that the coupling to the

image can be neglected for any simple probe with its center at least one probe

"diameter" away from the image p14De.

12. Probes with rounded corners

Rounding the corners of the square loop changes the unloaded loop sen-

sitivities by changing both the excitation voltages and the impedances.

The discussion of excitation voltage in Section IV-4 was actually not

restricted to any particular loop shape, so the same equation may be used:

v0 = -j k Q, . (IV-17)

Letting st be the perimeter of the loop, Eq. III-28a for the circular

loop can be written as:

Y: tj 30k st(Q2 - 3.52 + 0.33 (k2d) 2 )]" (IV-36a)

and Eq. II-E-16 for the square loop as:

S=j 30k st(iQ - 4.32 + 0.37 (k2d)Z)J"l (IV -36b)

This suggests that for any intermediate-shaped loop:

Y0 = ýJ 30k st(w - N + 0. 35 (k2d)231 (IV-36c)

where N is a shape constant. N is assumed to be a linear function of the ratio

st/2d which takes the limiting values 3.52 and 4.32 for a circle and a square,

respectively. This assumption gives:
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N = 0.93 a + 0.60 (IV-37)

and allows Eq. IV-36c to be used for the square loop with rounded corners.

The modified symmetric excitation voltage is calculated from:

2d
2 cos kd YCT cT (IV-38)Vs = -- iS'--( .- 3S

S, ZO -Zd

which is Eq. IV-22 generalized to use only the z component of current from a

wire lying in an arbitrary direction. This must be done because it is only the

z component of current that contributes to the tangential electric field along the

midplane, [Es] /Z of Eq. IV-21. This integral leads to:

4 cos kd st st

Vs = k [sink (d - r) - (1 - cos k (d - r)) ctn k-8- -+ k 2 rd csc k aT

(IV -39)

where r is the radius of curvature of the corners of the loop.

Since the symmetric admittance is only given to a fair approximation by

Eq. IV-29, the only change made for rounding the corners was replacing 8d

by St so that

st

YS k (IV-40a)

where

2S= n -t - 3.17 . (IV-40b)

A more elaborate correction was originally applied to the calculation of ;-q
but it produced only a 2% change in the result, and in view of the approxima-
tions already made in the impedance ZS , it was dropped as negligible.
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13. Effect of transmission line

For the doubly-loaded loop in the free-space measurement the external

transmission line can have an appreciable effect on the symmetric current.

This caai be seen from Fig. IY-2. In Fig. IV-2a there is no transmission line,

and the symmetric current vanishes at points A and B . In Fig. IV-Zb with

the transmission line present, the symmetric current no longer vanishes at

point A but at point C instead, at the first high impedance point on the ver-

tical line, the entrance to the detuning sleeve. This will alter the current dis-

tribution on the loop and make a change in the symmetric excitation voltage

which can be estimated by using:

Is(S) = IS(O) sin k (2d + h (IV-41)S ~sink (Zdr h)d

instead of Eq. IV-23 for the current in the left half of the loop. This gives an

increase in vS ranging from 1. 1 db for the smallest to 0. 4 db for the largest

loop, as computed from the measured value of h . There will also be an in-

crease in the admittance YS P which can only be obtained by solving the problem

completely., but which is likely to be of the same order of magnitude.

For the singly-loaded loop, the symmetry of load placement with respect

to the tr..nsmission line cancels out this effect at the load (Fig. IV-3).

14. Results; image method

These results are plotted in Figs. IV-4, 5, where it can be seen that

the experimental points lie on smooth curves, with the possible exception of

those for the very smallest probes, showing that random errors were negligible.

The theoretical values for SB are expected to be about 4% less accurate

than those for the circular loop, because only the zeroth-order mode impedance

has been used here. There is a further uncertainty introduced by the approximate
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method of dealing with rounded corners, especially for the smaller loops. The

error due to this is less than 10% for 2d = .013X and 5% for 2d = .05X . The

over-all accuracy of SB is expected to be within 0. 7 db and 5 degrees in the

range .02< 2d/ < '10 .

The theoretical values for SE are expected to be considerably poorer

than those for SB because of the approximate nature of ZS . This affects

mainly the magnitude of S"E I leaving an expected accuracy of 2 db and 5 degrees

over the same range.

Both experimental values are expected to be accurate within 1 db and 5

degrees just as in the case of the circular loop. The actual agreement between

theory and experiment is somewhat better than expected. The phases showed a

mean deviation of less than 2 degrees and a maximum deviation of 3 degrees.

The measured magnitudes of electric sensitivity S E show a slightly steeper

rise with 2d/k than the theory predicts, but the mean deviation is only 0. 7 db,

and the maximum deviation 1.2 db, despite the rough approximations used in

the theory. The magnetic sensitivity SB shows experimental amplitudes that

are uniformly low by about 1. 7 db for the singly-loaded and 1. 2 db for the doubly-

loaded loop. This behavior is almost identical to that for the circular loop, and

is no doubt due to the same (unknown) cause. The plots of error ratio in Fig.

IV-5 show the combination of the discrepancies due to SE and SB , except that

no normalization error is present.

15. Results; free-space method

The expected accuracy of the theory for the free-space method is essen-

tially the same as for the image method, but the experimental accuracy is re-

duced. In particular, the presence of the transmission line will produce changes
in vS and Z for the doubly-loaded loop which may change S(2) by as much

S S



IV -17

as 20% for small loops and 10% for large loops. In addition, probe manufacture

was less accurate and unbalance error sometimes was present. The problems

of normalization have already been discussed.

The results plotted in Figs. IV-6, 7 refer to the measurements in which

all probes were placed consecutively at a given field point. Comparison with the

series of runs using each probe at various points gave a measure of the experi-

mental errors. A mean deviation of 0. 4 db in amplitude and 4 degrees in phase

was found for the normalized results.

In Fig. IV-6 it is seen that the phases have some points scattered by as

much as 10 degrees from the smoothed curves. This is believed to be due to

the difficulty of correcting exactly for the differing lengths of internal transmis-

sion line in the various sizes of loop. This is borne out by the disappearance

of this random scattering in the phases in the plot of arg E in Fig. IV-7. In

addition to this scattering, there is a certain amount of systematic deviation in

phase which averages about 4 degrees and is somewhat greater than in the image

method, as was expected.

The measured magnitudes of the magnetic sensitivity ISB I are again

uniformly low, by 1. 5 db for the singly-loaded loop, and 1. 0 for the doubly-

loaded loop, essentially the same behavior as in the image method, although

these points do scatter somewhat more about the smoothed curve.

For the singly-loaded loop the electric sensitivity Is(l) I follows the

theoretical curve very closely, with a mean deviation of 0. 3 db. For the doubly-

loaded loop, however, the experimental values all lie above the theoretical curve,

by an amount equal to 3.0 db for the smallest loop, and decreasing to about 1. 8

db for the large loops. This is in marked contrast to the results from the image

method, for which IS(2E)1 lies very close to the theoretical curve for small
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loops and deviates by less than 1 db for the large ones. It is believed that this

is due to the alteration of the loop parameters in the presence of the transmis-

sion line. In Section IV-13 this was discussed and an increase in SE ranging

from 2 db to I db was justified semi-quantitatively.

The theoretical dependence of the magnitude of the error ratio It I upon

the wire radius, ./X , is shown in Fig. IV-8 for both singly and doubly-loaded

loops. In Fig. IV-9, the dependence of 1 #(2)1 upon the load resistance, RL

is shown. The curve for RL = 0 applies also to I a(')I for the singly-loaded

loop with arbitrary load resistance. Experimental data were not taken for

either of these cases since the variation of IE I with a,/X and with RL does

not differ significantly from that for the circular loop.



Section C. Conclusions

16. Conclusions

The conclusions which may be drawn about the square loop are practi-

cally the same as those for the circular loop in Section III-i 1.

Figure IV-10a gives a comparison of the magnitudes of the error ratios

for circular and square loops of the same diameter. It is seen that, in general,

a square loop hax an error ratio about 1. 2 db larger than a circular loop of the

same diameter. The only exception comes for doubly-loaded square ioops of

diameter Zd < .025k , for which the error ratio actually becomes smaller

than that for the circular loop. However, a comparison of the error ratios of

circular and square loops with the same magnetic sensitivity, as in Fig. IV-10b,

shows for singly-loaded loops that the square shape gives a lower error ratio

for a given magnetic sensitivity than the circular shape. For doubly-loaded

loops, the square loop gives smaller IE * for small diameters but larger I E

for large diameters compared to the circular loop, although the two differ by

less than 0. 5 db everywhere.

For convenience in probe design, Figs. IV-Ila, b give curves for the

maximum loop diameter which can be used if the error ratio must be kept be-

low a certain value. These are shown for tho square loop, in both doubly and

singly- loaded cases, for various values of the load resistance R L and the

wire thickness parameter Q . The circular loop will have very similar be-

havior. It must be noted again that the doub/y-loaded loop is to be used within

a balun detector, so that the system error ratio will be below the probe error

ratio by a factor dependent on the degree of balance, as discussed in Sections

Notice the change of scale on the ordinate of the singly-loaded case.
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111-5, 10. Typically, this factor will be 0.03 to 0. 10, so that a probe error

ratio I4(2)1 = I implies a system error ratio of 0.03 to 0. 10. The error

ratio of the singly-loaded loop, however, is identical with the system error

ratio.

Another conclusion which is reached by comparison of the free-space

loops with the image loops is that the presence of the transmission line sig-

nificantly increases the error ratio. This leads to the discussion of load

placement and bridged loops in Chapter V.
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17-5 SQUARE LOOP (ROUNDED CORNERS) AGAINST IMAGE
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TABLE IY-l

Probe Constants for Small Square Loops

(Approximate Expressions for e. < < d 4kZdZ < < i

Single Load, YL

YL " j [30k (8d) (0 - 4.3)]" -

s(l), y- L•. 3 (awd)
YL j [30k (8d) (a 4.3)]

(1) 4 -j 3 ( d

Double Load, Y L each

A.z y L J-Zwd
YL j Z (30k (8d) (91 - 4.3)]"1 " ( "

S()yL j3 jZwd
E Y + j Z [30 (a2-3Z) -]'I 3,

& - k L - U 4 3 ['j ((3wd)]
I 5k (8d) (0 - 4. 3)] r( 3P



CHAPTER V. PLACEMENT OF PROBE LJOAD

Section A. Effect of Load Placement

1. Introductory discussion

It was suggested in Section IV-13 that the external transmission line

couples to currents in the loop that are symmetric with respect to the plane

through the transmission line and the center of the loop. If a load is connected

opposite the transmission line it will be at a null of such currents, but if it is

anywhere else, the line will alter the load current. A deviation in the measured

electric sensitivity of the doubly-loaded loop was attributed to this cause (Sec-

tion IW-16).

The response of a series of singly-loaded loops differing from one an-

other only in the load position was studied in order to test this hypothesis.

Referring to Fig. V-la, three load positions are distinguished, with position

No. 2 directly opposite the transmission line, and position Nos. 1 and 3 on

sides adjacent to it.

The use of shielded loops facilitates the placement of the load, since the

probe consists of the outer surface of the loop, loaded at the gap by the internal

transmission line. The internal transmission line is completely isolated from

external fields at the driving gap, and the antenna currents on the outside sur-

face of the loop behave as if there were no internal line, but only a lumped load

ZL at the position of the gap. The load currents, I1 in Figs. V-lb and V-Ic

are equal.

2. Experiment

The loops used had a diameter Zd = .051 , wire radius a.= l.984xI0"3 X

and a load impedance Z L " 56 ohms. The load gap was located in different

V-1
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positions, and correction was made for the corresponding change in transmis-

sion-line length between the gap and the remote detector. Figure I-Z3 shows

the actual probes used.

The relative probe sensitivities, SE and SB (unnormalized), and the

absolute error ratio E , were measured using the mean value from several

points in the near-zone dipole field just as in previous free-space measurements

(Section IV -9).

3. Results

The mean values of SB were constant in both magnitude and phase

within the limits of experimental error for all three load positions, The mean

values of SE were equal for load positions Nos. I and 3, but for load position

No. Z the magnitude of SE was lower by Z db (Table V-I). This is approxi-

mately the same effect observed in Chapter IV with doubly-loaded loops. Since

load placement here only has meaning with respect to the transmission line,

the change in SE must be due to coupling to the line.

A second question can also be answered from the same set of measure-

ments. Does the error in measurement due'to transmission line coupling cause

the effective (observed) value of SE or SB to vary from point to point within

the field? Table V-2 gives the mean deviation of these constants from their

mean values for measurements at a variety of field points. It is seen that there

is no significant dependence of these mean deviations on load position.

4. Conclusions

It has been shown experimentally that the presence of the transmission

line normal to the plane of the probe has no effect on the magnetic sensitivity

SB of a loop, but that it does increase the electric sensitivity SE unless the

load is symmetrically placed.
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It was also shown that this is not a source of error in relative field

measurements, since the new value of SE is still independent of the field. For

absolute measurements of E , the new value of SE would have to be determin-

ed. The only other adverse effect is an increase of the order of 2 db in the

error ratio t , so that in a critical situation where e was rath,-.r large anyway

it would be especially desirable to locate the load symmetrically with respect

to the line.



Section B. Bridged Loops

5. Introductory discussion

From the consideration of load placement it is clear that for a singly-

loaded loop, the load gap should be placed directly opposite the transmission

line. With the doubly-loaded loop this is impossible, but in order that the error

ratio be minimized the line should enter symmetrically with respect to both

loads. This can be done by means of a conducting bridge, as shown in Fig. V-2b.

6. Theory

It is evident that the bridge allows the line to be connected in such a way

that currents coupled from it have zeros at both loads. This removes the trans-

mission-line coupling, but at the expense of complicating the probe antenna by

adding the bridging element.

Consider the square loop first, and then add the bridge. In the square

loop the zero mode current 10 is simply a circulating current that is constant

at all points. When the bridge is added, it is seen from symmetry that 10 is

unchanged because any current entering the bridge at point A will be canceled

by an equal and opposite current entering at point B , as shown in Fig. V-3b.

The symmetric currents, however, will definitely couple to the bridge

as to a parasitic antenna, causing a current IB in the bridge, and changing

the symmetric current to %• (but keeping it symmetric) (Fig. V-4). The com-

plete solution of this problem involves three coupled integral equations and has

not been solved. A., estimate of the direction ann magnitude of the effect can

be made by considering the behavior of closely-shaped dipoles. King [1] shows

that two symmetrically-driven parallel dipoles of radius a, and spacing b are

equivalent to a single antenna with an effective radius

V-4
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"4e (V-I)

This results in an increase in the total current carried by the two antennas, but

a decrease in the current carried by one, compared to its isolated state. The

ratio of the admittance of an antenna in the presence of a second coupled antenna

to its admittance when isolated is

y2
-Y= = 2 (V -2)

1 2~ 21n1

where 1, is the expansion parameter for the singlb antenna.

The previous analysis of the receiving loop in Section IV-4 shows that

the electric sensitivity is proportional to the excitation voltage vS and the

symmetric admittance YS", The excitation voltage is not changed by the pres -

ence of the bridge, but YS is. Therefore, the change in SE is proportional

to the change in YS " As an estimate, it was assumed that the new value of

YS has the same ratio to the old value as Y2 has to YI for coupled dipoles.

Therefore, the new value of electric sensitivity is approximately:

Sk. t E(V-3)

For probes with Zd < .05X and a typical value of o, it was estimated that

SE should decrease by 0. 5 - 1 db, depending on loop size.

An alternative point of view would be to treat the bridged loop as two

closely-spaced rectangular loops, each with a single load. This would indi-

cate only a very small change in SB when the bridge is addcd, but the decrease

in SE could be substantial since S(E) is considerably less than S(2) for theEE E

smaller loops (Fig. IV-4b).

7. Experiment

The experiment was conducted in the usual way, using both the image
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and the free-space techniques. The first part of the experiment was designed

to compare the sensitivities of a bridged loop with those of a square loop. The

second part was a study of the accuracy of the two types of loops as probes,

and the third was a study of a series of bridged loops themselves. In all cases

the loops actually had rounded corners, and corrections were made-for this and

for the internal transmission line as in Chapter IV.

8. Results

Table V-3 gives a comparison of the sensitivities of square and bridged

loops with and without a transmission line (free-space and image methods). It

is seen that for the image loop, the bridge changes only the phase of SE # in-

creasing it by 30 degrees, while for the free-space loop the same phase change

occurs but there is also a arop of 4 db in the magnitude of SE . Therefore.

transmission line coupling is seen to increase SE for the the square loop by

about 4 db. Use of the bridge removes this effect and produces an increase of

30 degrees in the phase of SE *

The mean deviations of the sensitivities S. and SE for various posi-

tions in the field are a measure of probe accuracy. These are presented in

Table Y-4, where it is seen that there is no appreciable difference between the

square and the bridged types.

For the study of the bridged loops themselves a smaller wire, with

a,= 82Z x 10" 3 k , was used to allow manufacture of the bridge for very small

loops. The probes are shown in Fig. 1-24 and the results are plotted in Figs.

Y-5, 6. For comparison, theoretical curves are plotted for the square loop

with single and with double loads. The magnitudes are absolute measurements

and the phases are relative measurements. The magnetic sensitivity is seen

to lie about I db below the theoretical curve for the small loops. Just as in the
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case of the square loops (Fig. IV-6a),but for 2d -: . 05X the experimental and

theoretical magnitudes agree. The experimental phase, arg SB P agrees with

the theory throughout. The electric sensitivity, however, behaves quite dif-

ferently from that of the square loop. In both magnitude and phase it lies be -

tween the theoretical curves for double and single loads. This has been discuss-

ed qualitatively in Section V-2 above. The error ratio also lies between the two

theoretical curves in both magnitude and phase.

9. Conclusions

It has been determined that the bridged loop represents an improvement

over the square loop in magnetic field measurements for two reasons. Firstly,

it allows symmetrical connection of the transmission line, with a corresponding

reduction in the effective value of SE . Secondly, it decreases the symmetric

admittance of the probe and thus reduces SE still further. The reduction in

SE reduces the error ratio by a few db, and therefore, may improve measure-

ments of B in critical situations where the cross coupling of modes is signifi-

cant. The improvement is less than I db for large probes or for image probes,

but may reach 4 db for small free-space probes.
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TABLE V-I DEPENDENCE OF SENSITIVITY CONSTANTS
ON LOAD POSITION

SQUARE LOOP, SINGLE LOAD, 2d a.05X,,o a1.984x10- 3 X• ZL' 5 6

FUNCTION r--LOAD POSITION ,

1 ;32 #3

IS91 db* 16.6 16.8 17.2

org SB (DEGS 313 313 31.4

ISE 1 * 10.6 8.7 10.7

org SE* 223 224 222

I11 -6.0 -8.1 -6.5

org 6 270 271 268

* THESE RE RELATIVE VALUES ONLY

TABLE "9-2 MEAN DEVIATION OF SENSITIVITY
CONSTANTS FOR VARIOUS LOAD POSITIONS

FUNCTION LOAD POSITION
#1 -2 -3

8I SBI db ±0.4 ±0.4 ±0.4

Sarg SB(DEG) 2 ± I + I

"ISEI ±0.2 ±0.3 ±0.2

8org SE ± 2 + 3 ±2



TABLE 1Z-3 SENSITIVITY CONSTANTS, SQUARE AND
BRIDGED LOOP

DOUBLE LOAD, 2d .05 X, a - 1.984 x 10- 3 X, zO 100

FUNCTION THEORY I EXPERIMENT

IMAGE FREE SPACE

SQUARE SQUARE BRIDGED SQUARE BRIDGED
IS8 I db. 49.2 48.1 48.2 (50.2) (49.8)

arg SB(DEGS 228 226 227 221 220

I SE I 43.6 44.0 44.3 (46.0) (42.1)

org SE 85 87 118 90 117

I c-I -5.6 -4.1 -3.9 -4.2 -7.7

arg e 217 221 251 229 257

()THESE MAGNITUDES ARE NOT NORMALIZED WITH
RESPECT TO THE IMAGE VALUES

TABLE V-4 MEAN DEVIATION OF SENSITIVITY CONSTANTS

FREE SPACE LOOPS OF TABLE 2-3

FUNCTION LOOP TYPE

SQUARE BRIDGED

I Ss' (db) ±0.2 ±0.1

Barg SB (DEGREES ± 2 + 2

8ISEI ±0.7 ±0.9

a - rg SE ±3 -3



CHAPTER VI. ELECTROMAGNETIC FIELD MEASUREMENTS

Section A. Far-Zone Type Fields

1. Single field measurements

The measurement of fields of the far-zone type is a relatively simple

matter, as shown in Fig. VI-1. The electric field is polarized in a plane nor-

Mal to the direction of propagation, and its two components, E. and E can

be measured using a short electric dipole probe (Chapter II). The magnetic

field is also polarized in the same plane, and both its components can be meas-

ured using a conventional singly-loaded loop oriented in a plane perpendicular

to the desired component. The side of the loop containing the load can be orient-

ed perpendicular to both components of the electric field so that any electric

mode current has a zero at the position of the load, and the load current is pro-

portional to the normal magnetic field alone. This simple measurement of B

is possible because the radial electric field ER is zero in the far zone.

It should also be mentioned that in the far zone corresponding magnetic

and electric field components are equal.

c B, = E9  (VI-la)

cB = E. (VI-Ib)

Therefore, it is not really necessary to measure the magnetic field itself.

Furthermore, if the magnetic field is being measured and the probe is mis-

oriented so that electric mode currents flow in the load, Eqs. VI-1 show that

these currents will also be proportional to the magnetic field anid therefore

will produce no error in a relative measurement, provided only that the probe

orientation remains constant with respect to spherical coordinates.

VI-1
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2. Universal probe

It is interesting that for any linearly polarized field with, say, only B1

and Ee present, a singly-loaded loop can be so oriented as to respond to B

alone, E alone, or a combination of B and E . In Fig. VI-2 the following

equations apply to the respective load currents:

IL S c B (VI-2a)

I = S(P E (VI-Zb)

IL -s- c B+ ) E. (VI-2c)

For probes of a convenient size it is quite possible to have SM and S(1)
E B

equal (Chapters III and IV). This is the basis of a rather interesting "universal

microwave probe" proposed by Conley and Talham [1], mainly for demonstration

purposes. A very similar situation can be found in certain transmission line

measurements, which are discussed in Chapter VII.

3. Direction finders [2]

The direction finding loop is typically a shielded loop with the gap load

at the top, free to rotate about the vertical z axis in order to determine the

azimuth of an incoming vertically polarized signal. Figure VI-3 illustrates the

loop response to the four possible types of incident traveling wave. IB is the

load current due to the incident B field and IE is the load current due to the

incident E field. With this type of loop the observed output is IL :

IL= IB +IE * (VI-3)

The loop is rotated to the position for a null in IL and then assumed to lie in

a plane perpendicular to the direction of propagation (and to the azimuth of the

distant source).
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The wave incident on the loop may be a composite of all four postulated

types even if the distant source is transmitting only a horizontally propagated,

vertically polarized wave. This is due to various propagation effects such as

scattering, refraction, and ionospheric reflection [3]. There are two types of

errors introduced by these waves, antenna effect and night effect.

Antenna effect is due to the presence of electric mode currents in the

load. It is normally thought of as referring to the effect of a vertical electric

mode in an unshielded loop when the load is unbalanced with respect to ground,

but it applies equally well to the case of the horizontal electric mode from a

horizontally polarized wave, as in Figs. VI-3b, c, d. At low frequencies the

loops used are electrically so small in diameter that S11) is very small com-
E i

pared to S" and the response to the electric mode is negligible. At higher

frequencies, however, it is expected that antenna effect will become quite

significant if a horizontally polarized electric field is present in addition to the

vertically polarized field. For example, if the loop is turned to the null posi-

tion for the vertically polarized incident field of Fig. VI-3a, it will be in the

position for maximum current due to any horizontally polarized field like that

in Fig. VI-3b. Therefore, the null in the load current of the loop will depend

upon a combination of the two currents as in Eq. YI-3 and may occur at prac-

tically any angle with respect to the direction of propagation, so that the meas -

ured direction of the source w:11 be in error. This effect must be eliminated

by making the system error ratio small. It has been shown in previous chap-

ters that this may be accomplished by making the loop physically very small

(diameter less than . 01 X ), or by a double loading scheme with cancellation of

the undesired current.
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Night effect is due to the presence of vertically propagated waves.

With a vertically polarized source the normally polarized vertically propagated

wave produces no error as seen in Fig. VI-3c, but the abnormally polarized

wave shown in Fig. VI-3d can produce large errors. For the abnormally polar-

ized wave both IB and IE have maxima when the loop is in the usual null posi-

tion and this will lead to an error in source bearing determination. Again, the

value of IE can be made negligibly small, as described above, but IB remains

as a source of error which could only be eliminated by rotating the loop to the

horizontal plane, in which case it would provide no azimuth information.

4. Ficds due to multiple sources

The measurement of the net field due to multiple sources reduces to the

simultaneous measurement of a combination of the four field types shown in Fig.

VI-3. This can be done only if the system error ratio i due to electric modes

is made very small. The problem is the presence of three components of elec-

tric field rather than the two present in a single far-zone field. This will be

discussed further in Section B below.

These may arise from elevation of the source in an airplane or from iono-
spheric reflection of radio frequency waves.



Section B. Near-Zone Fields

5. General comments

The measurement of near-zone fields is characterized by the presence

of longitudinal as well as transverse components of the field vectors, so that, in

general, all three components of E and B will be present. The use of an elec-

tric dipole to measure E is still straightforward, but the measurement of B

is more difficult.

In the far-zone type of field it was possible to orient a loop probe so that

electric modes were not excited. In rectaingular coordinates, this method is

only possible if the following requirements are satisfied:

To measure B , E or E must be zerox y B

To measure By, Ez or E must be zero

To measure B , E or E must be zero
z y x

For example, the field components Bx and By of a transverse wave traveling

in the z direction may easily be measured by making use of the fact that E is

zero. But the presence of the longitudinal field component, Ez , in a near-zone

type of field makes it impossible to orient the probe for the desired B response

without an E response being present also.

6. Methods of attack

Since, in general, undesired electric modes will be excited in a loop

probe, they must be made negligibly small or canceled out. A measure of the

relative response of the entire system to unit electric field as compared to its

response to unit magnetic field* is the system error ratio eS,

Here magnetic field is c B , measured in the same units as E.

VI-5
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SESSE (VI-4)

ES

where SSE and SSB are now system sensitivities. For the singly-loaded loop,

SsE and S are the same as the probe sensitivities SM and SM . but forSE B bu

the doubly-loaded loop with a balun detector (Section 1-13, 14) in the difference

output circuit:

SSE = SMw SE (VI-5a)

SB S) (VI-5b)

where S'u is a mode separation constant for the entire system. Therefore,

the system error ratios are:

(1) :(1) (VI-6a)

G (2) (VI-6b)
S=S~AU'

For magnetic probe use, the system error ratio must be minimized. It

has been shown in Chapters III and IV that 41) can be reduced without limit by

decreasing the diameter of the probe, but that the diameter must be of the order

of .01 X before the error ratio is reduced to 10% and of the order of .001 X for

an error ratio of 1%. This is the simplest method of approach and should be

used if it is possible to construct a small enough probe.

At microwave frequencies it may be difficult to construct a singly-loaded

loop small enough to make the electric response negligible. If this is the case,

two courses are open: making two measurements with a singly-loaded loop, or

making one measurement with a doubly-loaded loop [4].

Compare with Eqs. 1-2, 3 where S&U is a scattering matrix element for the
balun detector alone.
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In the first method, the load currents with the loop in a given position

and rotated 180 degrees from that position are:

I = S3 (c By0 ) + SM (EzO) (m-38b)

I = (c By 0 ) - (ESo). (m-41)

SLO and ILW may be measured consecutively and then added to get a current

proportional only to B . This method requires a probe-rotating system accu-

rate to 0.5 degree for accuracy of 1% in the usual case with an Ex field pres-

ent, but only within 8 degrees if such a field component is known tobe absent.

The second method has the advantage of requiring only a single measure-

ment at each field point. A probe-rotating system is not required except for

the initial balancing of the loop system. Since this can be done at a single point

in a known field, and in particular a field with EX= 0 , the rotating system can

be very simple and need only have a relative accuracy of 8 degrees. Once the

balance is adjusted (Section 1-14), the probe can then be used to measure any

unknown field. The accuracy of this method depends on both the error ratio and

the balance adjustment. For a doubly-loaded loop of any size less than . 125k

in diameter,* IEe(2) does not differ very greatly from 1, so that very small

probe size need not be achieved. It is, however, essential to make a good bal-

ance adjustment, and it was indeed possible to reduce SU to 2% without undue

difficulty. Greater accuracy would probably require much more refined tech-

nique s.

This method can be used with larger probes, too, but account must then be
taken of resonance effects on the currents in the loop and the small loop
analysis breaks down. Furthermore, there will be significant field averaging
effects for large probes.
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7. Experiment

Equations III-38b, 41 above show that the accuracy of a magnetic field

measurement with an electric response present can be determined by compar-

ing the two output currents from the probe in a given location, rotated 180 de-

grees in its plane between readings. Any difference in these currents is due

to an error dependent on the electric field.

The experiment was conducted using the near-sone field of a unipole

over an image plane in the free-space room (Chapter I). This has an elliptically-

polarized electric field lying in the plane normal to the magnetic field (Fig. VI-4),

so that electric modes will be excited for any usable orientation of the loop.

The magnetic field, Bo in confocal coordinates, was measured along the equi-

phase ellipse with ke = Z. 0 in a plane containing the source antenna (Fig. VI-4).

Four runs were taken with each probe, using the four different rotational orien-

tations indicated in Fig. VI-5. Square loops of various diameters and with both

single and double loads were used.

8. Results

The results were normalized in pairs, Right-Left and Out-In, to a mag-

nitude of 100 and a phase of 0 degrees at the position of the image plane (arc-

sin kh = 0 ),* and plotted against arcsin kh in Figs. VI-6a - h.

For the singly-loaded loops, the two magnitude curves, Right and Left,

are seen to differ from each other by a significant amount even for the smallest

This point, being the point of maximum field intensity, would usually be chosen
for normalization of relative measurements. The normalization was done by
pai.es to allow direct comparison of readings with probe orientations differing
by 180 degrees.
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probe, Zd = .013X , and the difference increases greatly for larger probes.

In phase there is good agreement only out to a certain angle, at which point

one of the measured phases jumps by 180 degrees.

The magnitudes measured using the singly-loaded loop with orienta-

tions Out and In, * and those using the doubly-loaded probe differ by only 21

of the maximum field. The phases in these instances differ by 2 to 6 degrees,

with the smallest probes giving the smallest differences, and the singly and

doubly-loaded loops performing equally well. Near the null in the field at

arcsin kh = 900 the measured phases are seen to deviate somewhat from the

theoretically expected constant value. t For present purposes, this does not

matter, since it is only the difference between pairs of values that is of in-

terest.

In absolute terms, remembering that tan 50 -' 0. 1 so that 50 error cor-

responds to 10% error, it is found that for arcsin kh < 850 the magnitude and

phase of B are measured within at least 10% accuracy by either the singly-

loaded loop oriented Out and In or the doubly-loaded loop with any orientation.

The mean deviation for a given loop over the entire range of fields is about 15'.

No dependence on loop size is observed.

It is to be noted that the field exciting the load current in the singly-loaded
loop with Out-In orientation is practically identical to a far-zone field, with
Ed 1- c BI , so that the electric response is proportional to the magnetic
response(and will introduce no error in a relative measurement, as discussed
in Section VI-I.

tThese deviations are due to the actual presence of scattered fields and to the
difficulty of phase measurement near a null. They are discussed more fully
in Appendix A.



Section C. Conclusions

9. Conclusions

The singly-loaded loop is suitable for measuring general fields only if

its diameter is very small, Zd < . 003 X for about 3% accuracy. It may be used

for far-zone type fields even if its diameter is large, provided that there is no

electric field parallel to the load, or, for relative measurements only, if the

electric field parallel to the load is directly proportional to the magnetic field

anyway. In other situations, the singly-loaded loop makes a very poor, and

even inadequate, probe.

The doubly-loaded loop, with an associated balun-detector circuit can

be used in all cases, provided that the balancing circuits are properly adjusted.

The only limitation on probe size comes when field-averaging effects become

significant (Section IMI-Z).

It should be recalled from Chapter V that a bridged loop has a somewhat

lower error ratio than a square loop of the same size, and from Chapter IV

that the difference between error ratios is negligible for square and circular

loops of the same magnetic sensitivity.
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CHAPTER VII. TRANSMISSION LINE

AND ANTENNA CURRENT MEASUREMENTS

Section A. Coaxial Line Currents

1. Theory

In a coaxial line it is customary to use a small movable loop protruding

from the center conductor as a probe for measuring the transmission line cur-

rent [1] (Fig. VII-la). It is instructive to study the basis upon which this can be

done.

The Ampere-Maxwell equation can be written in integral form for the

region within the coaxial line:

(I+ID) . d-. (VII-l)

a,

If the line integral is taken around a circle of radius r lying in the plane per-

pendicular to the center conductor, and it is noted that the longitudinal component

of " vanishes and that H is independent of 0 ,this equation reduces in cy-

lindrical coordinates to:

Zirr H = z (VII-Z)

where Iz is the total current in the center conductor. For a simple medium

filling the line this leads to:

cB 9 = B I. (VII-3)

This equation shows clearly that a probe which measures B0 at constant r

can be considered to measure Iz as a function of z when it is moved along

the line. Ideally the current in a loop probe lying in a plane longitudinal to the

line is a measure of c B0 at the center of the loop, so it makes a very satis -

factory current probe. The only question to be asked is how well such a loop

approaches the ideal.
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2. Possible sources of error

In summary, the theory makes the following assumptions:

1. D vanishes

2. H 3 to independent of 0

3. The probe measures B 0

4. The probe travels at constant r

The first and second assumptions are equivalent to assuming that only

the TEM mode is present. It can be shown [Z] that all higher order modes are

cut off if the average of the inner and outer radii of the line is less than about

0.16)..

The last assumption depends only on accurate construction. The use

of slotted tubing for the center conductor with the probe traveling in the slot

and positioned next to the surface (where the field is greatest) fulfills this re -

quirement very well. The introduction of a slot in the center conductor may

introduce local fringing fields,but usually this is not a problem. The effect of

such a slot has been discussed in some detail by Morita [3], and he concludes

that its effect is a slight reduction in the magnetic field in the vicinity of the

slot. Since the reduced field is directly proportional to the original field, and

thus to the current Is , this will produce no error in a relative measurement

of the longitudinal distribution of current.

The main difficulty arises in connection with assumption number three.

In the first place this requires that the probe be so small that it produces a

negligible effect on the input impedance of the line, that is, that probe loading

*Sometimes it is stated that the probe must not alter the field to be measured,

but this is an impossible requirement. The current induced in a conducting
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be negligible. It has been observed in a few cases that this requirement is

satisfied by probes with dimensions smaller than the diameter of the center

conductor.

In the second place, an electric field E r is present in addition to B.,

and this may also excite probe currents. The existence of such an electTic

dipole mode in a loop probe has already been discussed in some detail in pre-

vious chapters. The ratio of loop current due to unit electric field to the cur-

rent due to unit magnetic field (both measured in volts/ meter) has been defined

as the loop error ratio, * . In the present situation it is necessary either to

make * very small or to locate the load of the loop at a zero of the electric

mode currents. In practiceit is attempted to do both of these at or~ce.

The conventional probe shown in Fig. VIX-la has the load gap located

symmetrically with respect to Er , and since Ez is zero, no electric mode

current enters the load. If the load is actually off center because of manufac-

turing tolerances, the currents excited by Er will not vanish at the load and

error will be introduced. The magnitude of this error can be estimated as

follows: let at be the total perimeter of the loop and its image in the coaxial

center conductor, 6 the displacement of the load from the symmetric position,

and 4 the error ratio of the loop. For small loops the electric mode current

can be approximated by a triangular distribution with zeros on the axis of

symmetry. The electric mode current at the Ocei~ter" of a side is:

probe must produce a field equal and opposite to the incident field along the
probe surface in order that the boundary conditions be satisfied. The real
requirement is that the field scattered by the probe be negligible except in
a small region around the probe itself, so that this local perturbation will
be proportional to the pre-existent field at that point. That is, the incident
field must not be changed by the presence of the probe although the total
field will be changed.
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I =SEEr (VII-4)

and therefore the electric mode current at the asymmetrically located load is:

II.LE T 6'- S EEr "(VII -5)

T'st

The magnetic mode current is given as usual by:

ILB = SB c Ba . (VII-6)

Therefore, the ratio of the undesired to the desired output current is:

ILE. 6 Er

LB :r t

and the total current in the load is:

IL =LB + ILE . (VII-8)

In deriving this equation the actual shapes of the loop and its image have been

ignored, so that it is only an order of magnitude calculation. For an incident
E

traveling wave Er = c B., but for a standing wave the ratio •-r- may assume

any value from zero to infinity, so that it is very desirable to make the first two

factors as small as possible. The factor 4 can be made as small as 0.01

by good machining, but it is questionable whether it can be made much smaller

for small sized probes. The loop error ratio i has not been calculated for a

loop with asymmetrically located loads, which would correspond to this loop

with its image. It is expected that * will lie somewhere between the value for

the unloaded case (which corresponds to exact symmetry *) and the value for the

singly-loaded case (which corresponds to complete asymmetry). But these

values are equal, since the load admittance factor cancels out in the expression

In the case of exact symmetry, the load is at a zero of the electric mode cur-
rent and therefore can have no effect on it.
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for i(l) (Eq. III-39, 40). The loop and image do not have a simple shape, but

there is no reason to believe that the error ratio for such a shape will differ

greatly from that for a square or circular loop of the same diameter. From

these considerations it is seen that each individual probe should be tested for

electric response, a procedure which will be discussed below.

The probe in Fig. VII-16 has the advantage that the load and its image

are adjacent, so that it behaves essentially like a sOngly-loaded loop, for which

the error ratio can be reduced indefinitely by reducing the loop size. On the

other hand, the load is in the position for maximum response to Er , so that

the error current in the load may be very large compared to the desired cur-

rent if, as in the case of standing waves in the main line, Er >> c B0 .

In Fig. VII-lc is shown a doubly-loaded probe with two outputs which

can be added at the detector in the usual way to cancel the electric mode cur-

rents ILE due to Er and leave the desired magnetic mode current ILB *

This probe is more complicated than that of Fig. VII-la and the balance adjust-

ment probably cannot be made any better than the load can be symmetrically

located, so there is no practical advantage in using this style for coaxial line

measurements. Despite these considerations, this probe is of interest with a

view to application in antenna current measurements where Ez is not zero

and the conventional loop encounters difficulties.

3. Testing the probe for error

A study of the distribution curve in a short-circuited coaxial line is

adequate to determine the probe error for coaxial line measurements in general.

For a lossless line and a perfect short circuit, the fields at the surface of the

center conductor are given as functions of w , the distance from the load,by:
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c B (,, w) = 2 c B coo kw (VU-9a)

Er (a. w)= j 2 E01 sin kw. (VU-9b)

For any probe the output current is the sum of the components proportional to

each of these fields:

IL(w) = .,(Z c B. cos kw) + SE(j 2 E. sin kw) (YV-10a)

where SB and SE are suitably defined complex sensitivity constants. In gen-

eral, c B G equals E0•, and for convenience these may be taken equal to 0. 5,

leaving:

IL(W) = SB cos kw + j SE sin kw. (VII=-0b)

Let w0 be the position of a minimum in the magnetic field, exactly one-quarter

wavelength from the load, and w 1 the position of a maximum in the magnetic

field, exactly one-half wavelength from the load. Then:

IL(w0) i SE (VIs-il)
I =-•• Le (wv1) B-`

where e is a suitably defined error ratio which can be determined from the

relative output currents at these two points. This method has the disadvantage

that the calibration points must be located mechanically, assuming the load to

be a perfect short citcuit. For a reactive load, it would be necessary to meas-

ure the actual load impedance, using a charge probe, and make an appropriate

correction to the location of magnetic field maximum and minimum.

It has been suggested in the past [3] that the degree of balance (symmetry)

of a probe may be tested by examining the symmetry of the distribution curve

near the minimum. Letting a = e' + jel , where el and ea are real, the

magnitude of the output current can be deduced from Eq. VII-10b:

I L(w)l = is BI cosZ kw + IeIZ sinZ kw - 2 e" sin kw cos kw.(VIi-I-2)
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From this equation it is seen that it is only the imaginary part of e that will

cause an asymmetry of I 10 (w) I near the minimwrrm so that examination of the

symmetry will not weveal the presence of a real part in e . For this reason

the previous method, using the currents at quarter and half wave points is

preferred. It is also seen that the presence of a real part in a does cause

the distribution curve to differ from the normal I cos kwI shape,* a condition

which is easily recognized by the occurrence of a finite, non-zero value of

the minimum current.

The presence of losses in the line or the load complicates the testing

still further. In the case of low losses, the usual transmission line equations

[4] combined with Eq. VII-8 lead to a new expression for the load current in

the probe:
a ZS

IL(w) = SB4~ -jw a) coo Pw + j (e - w 7 - sin Pw (VII-13)

where a and P are the real and imaginary parts of the propagation constant

(now complex), ZS is the load impedance, ZC is the characteristic impedance

of the line, and the incident field has been normalized as in Eq. VII-10b. It is

seen at once that e can be found directly using the method of Eq. VII-11 only

if Wa << e, v C << 1, and Z < < e . Otherwise three independent meas-

urements would have to be made. This could be done by first measuringa

ZS
and 7 with a charge probe and then making a current measurement using

Eq. VII-13, but this does not lend itself to a procedure for minimizing e ; it

just allows its determination for a given configuration. Fortunately, in the

An extreme example of this occurs for e = I , when IIo(W)I = ISBI = con-
stant.
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great majority of instances, losses winl be negligible and the simpler procedure

of Eq. VII-1l can be used.

4. Directional couplers

The electric dipole mode of a loop has long been used in the construction

of broadband coaxial directional couplers, although the analysis is usually couched

in terms of capacitive and inductive coupling [5]. Referring to Fig. VII-2 for the

forward wave the fields at the center of the loop are Er = c B , but for the back-

b bward wave they are Er = - cBe . The current in the probe depends on both elec-

tric and magnetic modes:

I aSB c B0 +SE Er (VII-14)

where SE and SB are over-all probe sensitivities for the coupling loop. and

their ratio is the error ratio e . Then:

I -sa [(i + e) cB f + (I -_,) c.] . (VU-15)

Reference to Figs. 1II-9 and IV-5 shows that for square or circular loops an

error ratio e = -1 may be obtained. Presumablythis is also possible for a -

loop protruding into a coaxial line through the outer shell. In this case the

detector current reduces to:

ILZ = r5 B cB0 . (VII-16)

This shows coupling to the backward wave only, as desired in directional cou-

pler operation. Similarly, the detector could monitor ILl , in which case it

would be coupled to the forward wave only.

5. Eperiment, probe loading

The first experiment was designed to test for probe loading with the

particular probes used. A more general study of probe loading would be a

worthwhile subject for future research.
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The resonance method was used to study the effects of various probes on

the apparent load impedance of a coaxial line. This is illustrated schematically

in Fig. VIU-3. The generator Ve and its internal impedance ZG consist of a

movable feeding piston carrying a coupling loop, driven by an external generator.

By moving the piston and thus varying s , and observing the output from the

fixed probe, it is possible to measure the impedance Z&A looking to the right

at a reference plane A - A' , an integral number of wavelengths from the load.

The complex terminal function of this impedance is [6]:

9 sA - PsA +j ýsA (VII-17)

and the impedance can be found from:

ZsA = ZC oth 0sA. (VII-18)

A loop probe protrudes through a slot in the center conductor and can be moved

along it (Fig. VII-la). The current in the probe is proportional to the line cur-

rent at the probe position, which is known from transmission line theory to be

[7]:

W z (VII-19)
c s

Ve S
where - is a constant of the generator and line, and for low-loss lines:

c

Sw - [sinh2 PsA + sin2 (P w + 12 (VII-20a)

Ss I [sinh PsA + sin (Ps + s +A 1/" (VU-20b)

From these equations it follows directly that if w is kept constant and s is

varied by moving the generator piston, the terminal functions are given by:

Imax
sA = coth (VII-21a)

min
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+ 3 o - 'eax) (YIU-Zlb)

where s0 is the line length for maximum current with a pure short circuit as a

load, and sarax is the line length for maximum current with the actual load, a

short circuit with an intervening probe of significant size. The ratio Ims/Imin

is the standing-wave ratio.

The actual equipment used was a coaxial line built by Andrews [8] and

illustrated in Fig. YII-4. The line is filled with Styrofoam and has an inner

conductor with 0. 635 cm 0. D. and an outer conductor with 5.16 cm I. D. The

guide wavelength was approximately 50 cm.

6. Results, probe loading

The measured reciprocal standing-wave ratio and shift in maximum posi-

tion are plotted in Fig. Vll-5a against probe position for singly-loaded probes of

two different diameters, together with the theoretical curve for zero probe load-

ing. The terminal functions and the impedance could be calculated directly from

these quantities, but this was not necessary to determine the probe size for neg-

ligible loading effects. It is seen at once that the small probe with Zd = . 01 Xg

was quite satisfactory, producing negligible change in the SWR and maximum cur-

rent position for any location of the probe. On the other hand, the larger probe

with Zd = .03 X produced changes in these quantities which are unacceptably

large.

Figure VU-5b shows the current distribution in a short-circuited line

measured with these probes, and compared with the theoretical cosinusoidal

distribution. The results for the small probe agree very closely in magnitude

with the theory, but the results for the large probe deviate considerably. Part

of this deviation may be due to probe asymmetry and electric mode currents,
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but since the null is quite sharp and located very close to 0. Z5X from the load,g

it is clear from Eq. VII-1Z.that this is not the major effect. The main cause of

this deviation is that the large probe does indeed load down the line. The dis-

crepancies in both phase measurements near the null in current are due to the

difficulty of measuring phase near a null (Section 1-15) and to some extent to

probe symmetry. This latter is the reason that the smaller probe shows the

larger phase deviation. In any event the phase deviations are not large.

7. Experiment, electric modes

The same equipment was used for a study of the effect of electric mode

probe currents on the measured values for the current in the coaxial line. For

this purpose doubly-loaded loop probes, as shown in Figs. VII-1 c and VII-13b,

were used. Measurement was made of the current in the front load, If , the

current in the rear load, Ir , and of their sunm, IB I as a function of position

along a short-circuited coaxial line.

In order to obtain IB electrically, it was necessary to use a balun de-

tector and balancing circuits very similar to those described in Sections 1-13, 14.

These circuits are enclosed in a shielded box, shown with the cover off in Fig.

VII-4. The balance adjustment is made by locating the probe mechanically

0. 25Xg from the (short circuit) load, and adjusting for IB equý;l to zero. It

is seen from Eq. VII-1Z that this is the condition for zero error ratio e , now

referred to the measured current IB * This method involves the assumption of

negligible losses in the line and load. Andrews' data [8] give w T-= 0. 00065

for the line, so that line losses are indeed negligible. A measurement of the

resistance of the short-circuit termination gives RS/ ZC = 0.008, which may

cause 1% error in the balance adjustment. Also, the reference position is lo-

cated mechanically, so that it is only accurate to about + 0. 5.mm, which is
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0.001 X . Equation YII-12 shows that this may cause an adjustment of Ie1 that

differs from zero by less than 0.013. * Therefore, the value of Iea actually ob-

tained will be less than 0. 023, equivalent to 33 db separation between electric

and magnetic modes.

Since the current in a coaxial line is given by Iz = -- !- c B0 and the charge

by Zw= Ar. Er t the total load current in a singly-loaded probe can be written in

a manner similar to Eq. VII-8:

IL = SI Iz +Sq . (VII-22)

This equation illustrates explicitly the desired (current) response, and the (un-

desired) charge response. The electric mode in the probe could now be called

a charge mode, and the magnetic mode a current mode. Now the error ratio e

is given by S q/SI , although its value is the same as before.

Returning to the doubly-loaded probe, it is seen that the currents to be

observed are:

I = S I + Sq (VII-23a)

Referring to Eq. VII-12, adjustment is made for IL = 0 at the point in question.
If the point is 6 away from w=0.25Xg, then this condition will imply:

sin2 k6 + le12 cosZk6 - Ze* sink6 cos k6 = 0

which reduces for small k6 to

le12 = -k262 + 2e" k6

Therefore,the error ratio is limited by:

lel < 2k6

and for 6 < 0.001 Xg, let < 0.013.

tCharge is measured here in units of coulombs/ ohm to agree with the units of
current. ý = V.ýe is the wave impedance in the line.
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Ir = S I - S S (VJI-23b)

IB f If +r 2 5 I Iz (VII-23c)

Any disagreement between If and Ir shows the presence of electric modes,

but these are canceled in the sum current, IB

8. Results, electric modes

Figure VII-6 shows these effects for a probe of diameter Zd = 0.03 X ,g

and one of diameter 2d = 0. 01 X . For the larger probe the currents If and

I have minima separated by 0. 075 Xg -and maxima separated by 0. 125 X *

These two currents are nearly exact images of each other in both magnitude and

phase with respect to the point w = 0. 25 X 9. For the smaller probe, a similarg

effect is observed, but the minima are only separated by 0. 02 X and the maximag

by 0.03 g

The distribution measured using IB with the electric modes canceled

out is seen to resemble the theoretical cosine distribution. However, the same

deviation due to probe loading observed in Fig. VII-5b for the singly-loaded

loop is found again here.

9. Conclusions, transmission line measurements

It may be concluded that the conventional singly-loaded loop of Fig. Vil-

la is an adequate current probe for transmission line measurements, provided

that it is small enough for probe loading to be negligible. It is possible to use

a balanced doubly-loaded loop of the style of Fig. VII-1c with essentially the

same accuracy, but the added complication gains no advantage in transmission

line measurements. In either case, the probe must be tested for the absence of

electric mode output currents.



Section B. Antenna Current Measurements

10. Theory

The measurement of the current on a linear antenna is similar to the

measurement of the current in the center conductor of a coaxial line, but with

the important difference that the longitudinal electric field is no longer zero.

This means that a singly-loaded loop with the gap load parallel to the z axis

will now have an electric mode current present in the load, due to Ez (Fig.

VII-7a). in addition to the desired magnetic mode current, even if the gap is

symmetrically placed.

The Ampere-Maxwell equation shows that the tangential magnetic field

at the surface of the antenna, c B0 ,is proportional to the total axial current in

the antenna, Iz , at every point just as in Section VII-l, but the presence of a

non-vanishing value of Ez at points away from the antenna surface means that

the magnetic field away from the surface is no longer exactly proportional to

the current. Neither the radial electric field, Er , nor the longitudinal elec-

tric field, Ez , is proportional to the current in the line at every point. For

example, an infinitely thin linear dipole of half length h has a sinusoidal cur-
*

rent distribution:

Iz = Im sin k(h - I z1) (VII-24)

For all points that are not too near the center or the ends of the antenna, as

required by:

(h - IzI) 2 >> r2  (VII-Z5a)

IzIZ >> r 2  (VL-Z5b)

This discussion is derived from an ana.lysiq by King [9].

VII-14
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the fields at any pohit (r, z) near the antenna due to this current may be ap-

proximated by the following expressions in cylindrical coordinates:

c B9  60 1i(sin kh cos kz - cos kh sin kz) (VII-Z6)

60
Er L..j LIl(sin kh sin kz + cos kh cos kz) (VU-Z7)

E&0 h + z hE- 60 1h _ '4 rn[j(1+ cos kh -sin kh] cos kz

z (h z- z)m

+[h cos kh - j z sin kh] sin kz}. (VII-28)

By expanding the expression for the antenna current and using the equation of

continuity to derive the expression for the charge distribution it can be shown

that:

I z I Ir(sin kh cos kz - cos kh sin kz) (VII-29)

cq = -j Im(sin kh sin kz - cos kh cos kz) . (VII-30)

Therefore:

cB. 60 (VI-31)
r z

Er1 L . (VI-3Z)Er --r qz.

These equations actually become exaEct at the surface of any linear antenna,

but away from the surface they are approximations, valid only at points where

Eqs. VII-Z5a, b are satisfied.

It should be noted that most probes measure the fields a finite distance

away from the surface of the antenna and that they will therefore lose accuracy

Equation VII-31 was derived directly from the Maxwell-Ampere equation in
Section VII-l, and Eq. VII-3Z can be derived directly from Gauss' theorem,
both for an arbitrary current and charge distribution.



VU-16

at distances of about lOr from the ends and center of the dipole. A charge

probe can consist of a short radial electric unipole, which responds only to

Er. A current probe can consist of a small loop in the rz plane which ide-

ally would respond only to c B9 . Electric modes will cause departures from

this ideal. Finally, it is seen that Ez is not simply related to either the cur-

rent or the charge at a point on the antenna.

11. Errors with various probes

The first method of current measurement uses the singly-loaded loop of

Fig. VJI-7a. The current in the load is:

IL= SB (c B.) + SE Ez (VII-33)

where SB and SE are suitably defined sensitivity constants. The fields c Ba

and Ez are the values at the certer of the loop. The sensitivity constants are

not known exactly because the problem of the semicircular loop with its image

in a cylindrical antenna has not been solved. It may be estimated, however,

that the constants are about the same as for a doubly-loaded (because of the

image load) circular loop of the same diameter, Zd . The load current is in-

dependent of Er The ratio of the error current in the probe to the desired

current is:

IE e z (I-

rB 9CNo

The error ratio is a constant of the probe dimensions, and may be as low as

0.3 for a small probe (Fig. 11-9). The ratio of the fields varies from antenna

to antenna. It can be shown from Eqs. VII-26 and Z8 for a half-wave dipole

that this ratio is given by:

E d I + tan ÷ i: k'l (VI-35
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but it increases very rapidly near the end, reaching a value of 10 d at a dis-

tance 0. 2 h from the end, as mnay be seen in Fig. VII-8. It is evident fruil-

these considerations that the ratio d/ 2h must be made as small as possible for

accurate measurements. It should at least be less than 0. 03 to ensure accuracy

within 10% out to a distance 0. 2 h from-. the end of the antenna.

The second method of current measurement uses a doubly-loaded loop

probe as shown in Fig. VII-7b. The two load currents If and Ir are added to

give IB in the same way as for the coaxial line, described in Section VII-6.

The output current is:

IB = SB(c B E) + Sir Er + SkZ Ez . (VII-36)

Here there are different electric sensitivities for the two components of electric

field. The product of the electric sensitivity for a doubly-loaded loop, SEr '

and the cross-coupling coefficient of the adder circuit, SZU ,gives Sir . For

a perfectly balanced system, Sir would vanish, but in practice it has a value

of about 0.01. This means that 10% inaccuracy will be introduced in IB when

the field ratio Er/cB ( becomes greater than 10. This occurs for the half-

wave dipole within 0.06 h of the end. The sensitivity Skz to the longitudinal

electric field E appears in Eqs. VII-36 because the loads are not located at

zeros of the electric dipole mode due to this field. It should be observed that

this type of electric mode produces a current with the same symmetry as the

magnetic mode current. Therefore, the error current Skz Ez cannot be can-

celed by the adder circuit like the usual electric mode error current. A rough

estimate of the magnitude of Skz can be made by assuming that the antenna

This is made up of ISEr I E 0.3 and IS IU_ " 0.03
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surface is the closing side of the loop, giving a loop perimeter st = (Z + w) d

Assuming that the electric dipole mode in question has a triangular distribution

of current with maxima at the centers of the top and bottom of the loop, and

zeros 0. 25 st from these points, the current in the loads in this mode is then

about 0. 06 times the maximum, and Skz is 0. 06 SEx - where SEz is an

electric sensitivity approximated by that for an unloaded loop. Thus, S.z

may easily have a value of 0. 02 or so for a probe diameter of . 05 X , an order

of magnitude better than SE for the singly-loaded loop.

It is possible to vary the design of the doubly-loaded loop probe to that

shown in Fig. VUI-7c in an attempt to place the load gaps nearer the zeros of

the longitudinal electric mode currents. Because of the appearance of "inage

loads," it is doubtful what success this will have, although it will be better

than the probe of Fig. VII-7b for probes of moderate size. However, its error

ratio, referred to the longitudinal field, is more nearly approximated by E

than by (1), so that for very small sizes this style is actually poorer than

the probe of Fig. VII-7c (see Fig. 111-9).

Finally, the current may be measured indirectly by using a charge

probe as in Fig. VU-7d. The output current is:

IL = S Er . (VII-37)

From Eq. VYI-32 it is seen that I L will be proportional to the charge at every

point except near the base and the ends of the antenna. The equation of conti-

nuity can be integrated to give:

The load is displaced from the current null by a distance (0. 5 wd - 0. 25 at)
and thus will be at a position where the current is (0. 5 wd - 0. 25 st)/ (0. 25 st)
times the maximum. Substitution for at gives the stated value.
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Iz (z) = iz(0) - iw q(z) dz . (VJI-38)

0

If q(z) is measured, using the charge probe, the integral can be evaluated

numerically at any z . The constant Iz(0) is chosen to make Iz = 0 at the

end of the antenna, and values for Iz (z) may be readily derived. This method

has the disadvantage of being indirect and, therefore, more prone to experi-

mental errors, but it has the advantage of using a probe which responds to

only a single field component.

12. Experinient

The measurements of the current along a linear antenna were made on

a quarter-wave unipole over a conducting screen. By the theorem of images

this is equivalent to a half-wave dipole in free space, as has been discussed

in Section 11-4. The equipment consists of a coaxial feed line, with the center

conductor extending through the image plane to form the antenna (Figs. VII-9,

10). The center conductor is slotted, with a traveling probe protruding through

the slot just as in the experiment cn probe loading (Section VII-5) (Fig. VII-ll).

The coaxial line is the one built by Andrews [8], slightly modified to allow

connection of a doubly-loaded probe if desired. The image plane and the trans-

mitter are also the same as Andrews', but a differeat receiver system was

used. The receiver system is basically the same as that described in Section

I-C with a heterodyne detector, a phase measuring bridge, and a balun detec-

tor for adding and subtracjting the two load currents from a doubly-loaded loop

(Figs. VII-4, 12).

Two singly-loaded probes with diameters Zd = 0.01 X and 0.004X

as illustrated in Figs. VII-7a, 13 c were used in the first method of current
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determination. The second method made use of the improved doubly-loaded'

probe with Zd = 0.01 )X , shown in Figs. VII-7c, 11. The measurement of the

charge distribution, for current determination by integration, made use of the

charge probe of Figs. VII-7d, 13a, with h = 0.O02 X

13. Results

Figure VI-14 shows the measured current along a unipole with h = 0. 25k

and a = 8. 6.* The magnitudes measured with the four different probes show

differences which are systematic, but very small, about 2% of the maximum

current, except near the end of the antenna where the charge probe gives val-

ues about 6% of the maximum current below the others. When referred to the

current at each point the maximum deviations are less than 4% for all the loop

probes and 13% for the charge probe. The magnitudes are each normalized to

a maximum value of one.

The phases all agree within I degree for half of the antenna length and

then diverge somewhat, with values for the singly-loaded loops and the charge

probe differing by 4 degrees near the end, and the value for the doubly-loaded

loop differing by 7 degrees from them.

In all cases, the measured currents differ considerably from the zeroth-

order theoretical current which is a cosinusoidal amplitude distribution with

uniform phase. They agree somewhat better, especially in phase, with the

quasi-zeroth order theory proposed by King [10] and calculated by Mack [11].

14. Probe loading

As described in Section VU-6, the effect of probe loading can significantly

Zh
a=Zln. , = .0032.



distort current measurements on a coaxial line, especially for large probes,

so it must be expected to be important in antenna current measurements also.

The loop probes used were small enough (Zd < 0.01 X) for the expected

probe loading to be negligible, and this was verified experimentally. The cur-

rent distribution was measured with a fixed dummy probe near the end of the

antenna and compared with the current neasured without the dummy. There

was negligible (less than 1%) change in the current. This would -suggest that

probe loading was negligible, but a complete study would have to load the an-

tenna at various points and measure the input impedance. This would require

a setup with two probes, traveling independently.

15. Conclusions

From the discussion of Section VII-1 1, it was expected that a singly-

loaded loop probe would be accurate within 3% out to a distance of 0. 2h from

the end of the antenna. This was borne out experimentally by the fact that

the results for the small probe (2d = .004)) agreed with those for the larger

probe (2d = .01 X). If error was present, it would be at least twice as great

for the larger probe, and thus there would have been a difference between

these two results.

The doubly-loaded loop was expected to be accurate out to about the

same point, with an inaccuracy due to the slight error in balancing the probe

circuits. The error signal in this case would be proportional to the radial

electric field, and it may well be in quadrature with the desired signal. This

would explain the deviation in the phase curve for the doubly-loaded loop as

the end of the antenna is approached.

A probe of still larger dimensions could not readily be used to illustrate this
type of error because probe-loading effects would also have become prominent.
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The accuracy of the charge-probe method is hard to estimate because of

the integration of the experimental errors, but it was expected that these would

not be very large, and that is borne out by the close agreement of these results

with the others. The fact that the amplitudes determined by the charge-probe

method are a bit lower than the others near the end of the antenna is due to the

evaluation of the integration constant in Eq. VII-38 by requiring I = 0 at the end

of the antenna. The currents measured with the loop probes do not approach

zero at the end because the magnetic field, unlike the current, has a finite val-

ue there.

It was concluded, therefore, that the best probe for antenna current meas-

urements is the simple singly-loaded loop, but that it must be quite small

(Zd%..-. 01 X) to avoid probe loading and electric mode errors. If a larger probe

must be used, the doubly-loaded style should be somewhat the better, but neither

will be very good.

Finally, it must be remembered that no field probe will be accurate in

determining the current (or charge) within a distance 5d from the ends or

(except in special cases) from the base, where d is the probe height. This is

a consequence of the fact that the fields near the ends (and base) are not strictly

proportional to the current and charge except at the very surface of the antenna

(Eq. VII-Z5).
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CHAPTER VIII. GENERAL CONCLUSION

Section A. Review of Findings

The purpose of this study was to investigate the behavior of various

probes used in the mneasurement of an electromagnetic field.

Chapter I is a discussion of the experimental apparatus, which describes

in some detail the specialized equipment involved: particularly the free-space

room, designed to allow free-space measurements to be made indoors; the bal-

ancing circuits, which provide accurately the sum and difference of two currents;

and the phase-measuring system, which was somewhat more accurate than

existing systems, especially for large variations in signal level.

The unipole probe over an image plane, which corresponds to a dipole

in free space, is studied in Chapter HI. Very good agreement is found between

the theoretical and the experimental values of the prr,'e sensitivity* for a range

of wire diameters and lengths. These measu, t-iert- differed from those pre-

viously made by Morita and raylor (F.,iervri.e U-15) in that an absolute magni-

tude was obtained for the probe sensitivity, while they found only a relative val-

ue. Otherwise,these results agree with theirs except for a discrepancy at short

lengths which is probably due to one of the assumptions made in their calcula-

tion.. The main value of this work was to confitri generally their results and

to establish a procedure for the measurements.

In Chapters I1 and IV, the behavior of circular and square-loop probes

is studied in considerable detail. It was shown that theqe probes can respond

to both the normal magnetic field and the tangential electric field, so that both

magnetic and electric sensitivities are defined. The effects of probe diameter,

Probe qensitivity is output current per unit incident field.

VIII-1
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wire size, and load impedance on the sensitivities and error ratios were

studied both theoretically and experimentally, and agreement was generally

quite satisfactory, except that all the measured magnetic sensitivities were

about 10% lower than expected, and therefore, the error ratios were about

10% higher than expected. It was found that the error ratio decreases with

loop size and is independent of wire size and load impedance for a singly-

loaded loop.

Doubly-loaded loops were then tested in the same way. Following a

suggestion by King [1], the currents from the two loads were added in a bal-

anced detector to cancel the electric mode currents and enhance the magnetic

mode currents. This resulted in an improvement of 20 to 30 db.in the system-

error ratio, referred to the currents in the detector, as shown in Fig. VLU-l.

The amount of improvement for the doubly-loaded loops depends on the accu..

racy of the balance adjustment since the error ratio for the currents in the

loop itself is actually worse than in the singly-loaded care, It was determined

that the doubly-loaded loops have an optimum diameter of about 2d = .04 X

for which the error ratio reaches a minimum value of about 0. 5. It was also

found that reduction of wire size and load impedance reduces the error ratio

for the doubly-loaded loops.

When a balun detector is used with the doubly-loaded loops of Chapters

HI and IV, the sum and the difference of the two load currents cv.n be measured

simultaneously. Since the suin current is proportional to the normal magnetic

The error ratio is the ratio of the electric sensitivity to the magnetic sensi-
tivity, and is equal to the ratio of the' (undesired) electric mode current to
the (desired) magnetic mode current in a plane wave field with the probe
oriented for maximum excitation of both modes.
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field and the difference current is proportional to the tangential electric field,

it was shown that both fields can be determined at once using a single probe.

It was found in Chapter IV that the presence of the transmission line

caused an increase in the error ratio of the doubly-loaded loop. It was felt

that this was due to the asymmetrical connection of the line, and the experi-

ments of Chapter V verified this hypothesis. Then a new bridge-style loop

was developed which allows the transmission line to be connected at the geo-

metrical center of the loop and removes this increase in error ratio without

changing the magnetic sensitivity of the loop.

Chapter VI contains a discussion of the use of loop probes in field

measurements in terms of the loop constants studied in previous chapters.

The application of these principles to radio directioft £ind4s 6& &sctissed in

some detail.. Finally, a demonstration of the need to* the 49-4b1t-fadet pr*@be

is rhade, using the near-zone field of a unipole as the fi• teoe ISewebliet.

This field has both a lc~ngitudinal and a transverse corrupemme A q @ash*,

so that there will always be an electric mode eur'nt I O b Iladkei 5 is

bcing measured. The conventional loop probe jrMst lg Ma& euraodfii smalt

(2d < .003 X) to make the output current independent o1 the elecWtof fe4d tWith-

in 3%), but the new doubly-loaded probe may be quite large (2d~. T 3X) with-

out the electric mode current becoming more than. 3% of the sum output. This

allows the accurate measurement of the magnetic component of fields for much

smaller wavelengths than possible with ordinary probes.

Finally, Chapter VII is an investigation of the use of loop probes in a

coaxial line and along a linear antenna. An interesting sidelight is the appear-

ance of the electric modes of a loop in the theory of the coaxial directional

coupler, a very useful device which allows the independent measurement of
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either the forward or the reflected wave in a transmission line. It is concluded

that a conventional loop probe is adequate for measurement of the current with-

in a coaxial line because of the absence of a longitudinal electric field, but that

a doubly-loaded loop may be a somewhat superior probe for cqrrent meadure-

ment along a linear antenna, where this field does not vanish.
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Section B. Suggestions for Further Research

A discrepancy of 10% between all the experimental and theoretical val-

ues of magnetic sensitivity remains unexplained, as mentioned above, and al-

though this does not destroy the usefulness of the general results of this study,

it would be very interesting to determine the source of this disagreement.

It would be parttdularly desirable to use these probe techniques in ex-

plaining discrepancies in existing measurements of various kinds where a sig-

nificant electric mode current may be present. Such a situation is the meas-

urement of surface current on a scattering cylinder [2], for which measure-

ments have been started in this laboratory.

It would also be desirable to investigate other aspects of probe behavior,

such as ways to reduce the physical size of the probe while maintaining suffi-

cient output power. A possible method would use a core of magnetic material

within the loop, and this would involve finding the proper material for a given

frequency [3].

The possibility of makng freg-space measurements without using a

transmission line is an intrigutng one* Recent work by Hu [4] and by lizuka

[5] on a reaction type of measurement similar to that used in cavities is prom-

ising in this regard. .

f'urther study of the behavior of a probe near, but not against, a metal
S..

.boundary surface or edge would also be of considerable interest. Some theos
Q*

retical work has already been done on this problem [6], but only meager experio

mental results are known to be available, and the existing theory is not complete;

VIII-5
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Appendix A. The Near -Zone Field of a Dipole

1. Current on a dipole

The current distribution on a dipole (or a unipole) is usually assumed

to have uniform phase and a cosinusoidal amplitude. This is,in fact,only a

seroth-order approximation. *A new analysis of the problem by King [1] gives

a quasi-zeroth order solution that is considerably better for lengths near anti-

resonance, and somewhat better for all lengths. A more exact solution to the

problem can be represented as the ratio of two convergent infinite series, but

at best only second-order values have been calculated [2].

The current distribution on a half-wave dipole (or a quarter-wave unipole)

has been measured by various people for various antenna thicknesses, and the

results agree in showing a bulge in the measured current so that it is consider-

ably larger than the zeroth-order (or even the second-order) theory predicts

over much of the length of the antenna. There is also a phase lag towards the

end of the antenna, but this is fairly well predicted by the quasi-zeroth order

theory. Figure VII-14 shows a comparison between theory and experiment,

for 12 = 8.6 , where the accuracy of the various experimental curves is dis-

cussed in Sections VU-13-15.

The quarter-wave unipole source used in most of the measurements

described in this paper has a thickness parameter £2 = 11. 4 . Since the diam-

eter of this source was only 1/ 16 inch, the current could only be estimated

and not measured directly. The current in the infinitely thin antenna is known

from the series expansion to approach the zeroth-order value, so it is to be

expected that the current in a thin antenna will lie somewhere between the

cosinusoidal current with constant phase and the actual measured current for

the thick antenna of Fig. VII-14.

A-I
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Z. Near-zone field of a dipole, theory

The integrals for the near-zone field of a half-wave dipole can be per-

formed analytically for a thin antenna with the zeroth-order current distri-

bution [3]. They are readily expressed in confocal spheroidal coordinates as

(Fig. YI-4):

2 0 Im cos W kh -j fk
cNB J= j e (A-l)

T X / (k -) ( 1 kph)

2 -- 0, e k (A-Z)

Z ;o im sin Ir k j ke
E - h e e (A-3)

"~ X (k7 k! kh (ie ý- 1

These expressions have been used for calculation of the theoretical fields in

Chapter VI and the reference fields in the earlier chapters.

In order to estimate the accuracy of these field calculations, a numeri-

cal calculation was made of the magnetic field at various points due to the

(normalized) current actually measured for the antenna with Q = 8. 6 (Fig.

VUI-14) and compared with the magnetic field due to a cosinusoidal current

distribution with unit amplitude. Both calculations were made by using Simpson' s

rule with sixteen panels to evaluate the integral expression for the field from

the axial current distribution i(z'). The appropriate integral is:

h10 O e-JkR I
: -(R x2) iI-') z + ) dz, (A-4)

-h R
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which can be reduced in cylindrical coordinates to:

cBN = 30r S i(z') (cos y + j sin y) LL± =k4R dz' (A-5)Y~ R 3

-h

where

N = arctan kR - kR.

Table A-i gives a comparison of the results for each source current at

certain field points, and Table A-2 gives their differences, as calculated from

Table A-1. The numerical integration was accurate within 0. 1 db and 0. 5 de-

gree. It is seen from these tables that the primary effect of the changed cur-

rent distribution is to increase the fields by a constant factor and retard the

phases by a constant angle at all points.

The source antenna actually used in Chapter VI and elsewhere had 1 =

11. 4 and was thus much thinner than the antenna for which a measured current

distribution was obtained in Chapter VIn. Therefore, it is assumed that the

actual magnetic field was somewhere between the two values given in Table A-l.

The actual field will then vary in the same way as the zeroth-order field, with-

in the limits of experimental error. However, there may be a change in the

normalization factor of the order of 0. 5 db and 3 degrees due to the deviation

of the actual source current from the zcroth-order distribution. In a relative

measurement this would not be significant.

It is readily shown that the error in a calculation by Simpson's rule decreases
by a factor of about 16 when the number of panels is doubled. Therefore, the
error in a given calculation is estimated at 0. lthe difference between a cal-
culated value and that calculated using half the number of panels [4].
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Furthermore, except very near the antenna, the transverse electric

field will be changed by a change in source current in much the same way as

the magnetic field. Therefore, the type of deviation suggested here may

produce a general normalization error of the order of 0. 5 db and 3 degrees

in the measured values of both the probe sensitivity constants, SB and SE

Such an error would cancel in the measurement of the loop error ratio e ,

and could not bc the source of the measured deviation which was found only

in SB

3. Near-zone field of a dipole, experiment

Previous measurements of the near-zone field of a dipole use a mod-

eling technique based on Babinet's principle and measure the near-zone field

of a slot [5]. It was, therefore, desirable to measure this field directly, even

though there is no reason to doubt the validity of the modeling procedure in this

instance.

The measurement of the electric field was a relative measurement,

normalized for best mean fit, using an electric dipole probe of length ZI= 0. 08)..

The setup uses a unipole source with Q = 11.4 and h = 0. 25 X over an image

plane in the free-space room, as described in Chapter I. The results are plot-

ted in Figs. A-i, 2 against arcsin kh (approximately the angle from the image

plane) for various values of ke (approximately proportional to the distance of

At distances greater than about 0.2 X from the source, the far-zone terms
become dominant in both electric and magnetic fields. These terms are
identical in magnitude and phase.

tThis probe was left fairly long to get good discrimination against the cross-
polarized field.
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the field point from the origin). Agreement between theory and experiment

is very good, except near the image plane where coupling to the image probe

becomes significant, and near the axis of the source, where the tangential

electric field theoretically has a zero, but only a minimum is measured.

The measurement of the magnetic field was also a relative measure-

ment, normalized for best mean fit. A bridged square loop of diameter

Zd = 0. 038k was used as a probe, and the results are plotted in Fig. A-3.

Again the agreement is very good, with significant departures only in the

region ci small Bý where the effect of scattered fields and coupling to

electric fields would produce the greatest change in the measured field.

The fields were also measured along the image plane by inserting

probes through small holes in the plane. The electric probe was a unipole

of length I = 0.04 X , and the magnetic probe was a half-square loop of

diameter 2d = .038k . Since no transmission line is present in the field,

these are the most accurate measurements of all. The results are plotted

in Fig. A-4, and are seen to agree closely with the theory. The deviations

are periodic and give a measure of the standing waves in the room. The

calculated standing-wave ratio is one plus twice the maximum percentage

deviation in field. Therefore, the SWR is about 1.07 for both the electric

and the magnetic fields along the image plane.

*The theory referred to is the zeroth-order theory, which assumes a

cosinusoidal source current distribution.
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4. Near-Zone field of a dipole, conclusion

It is concluded that the actual near-zone field of a thin dipole is very

close to that predicted by the zeroth-order theory. Departures in the measured

values are small and of such a nature that 'hey can be attributed to experimen-

tal error, especially to the presence of small standing waves in the "free-,

space" room.
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Table A-I Magnetic Field due to the Current on a Dipole

Position Magnetic Field

(cosinusoidal current) (measured current)

magnitude phase magnitude phase

ke kh IcBýI arg cBC [cBýI arg cB•

(db) (degrse4 (db) (degrees)

2.0 0 48.9 -90.1 49.7 -97.6

0.5 47.1 -90.0 47.8 -97.3

0.9 40.0 -90.0 41.1 -95.7

0.98 32.8 -90.0 34.0 -95.3

1.0 .- -

5.8 0 38.5 -7Z.0 39.Z -79.2

Magnitudes are in db referred to 1 volt/ meter.

Phases are in degrees referred to the phase of the current at the base of the
antenna.

Table A-2 Change in Magnetic Field due to a Change in Current

Position Field Ratio: c Bj (measured current)
c B (cosinusoidal current)

ke kh magnitude (db) phase (dcgrees)

2.0 0 0.8 -7.5

0.5 0.7 -7.3

0.9 1.1 -5.7

0.98 1.2 -5.3

1.0

5.8 0 0.7 -7.2

Average Values 0.9 -6.6
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